Volume : 11, Issue : 09, September – 2024

Title:

ADVANCING TRANSDERMAL DRUG DELIVERY: A COMPREHENSIVE REVIEW OF MICRONEEDLE ARRAY TECHNOLOGIES

Authors :

Suraj Dubey,*Dr. Abadhesh Kumar Niranjan

Abstract :

Transdermal microneedle array technology has emerged as a promising innovation in drug delivery, addressing the limitations of conventional transdermal systems by enhancing skin permeability while maintaining a minimally invasive approach. Microneedles, which are tiny needles ranging from 50 to 900 micrometers in length, create microchannels in the skin’s stratum corneum, the primary barrier to drug penetration. This allows for the effective delivery of various therapeutic agents, including large molecules and biologics, that would otherwise be unable to permeate the skin. There are several types of microneedles, including solid, coated, dissolving, and hollow microneedles, each with distinct mechanisms for drug delivery. Solid microneedles create pathways for subsequent drug application, while coated and dissolving microneedles deliver drugs directly through dissolution or degradation within the skin. Hollow microneedles facilitate the direct injection of liquid formulations into the dermis. These designs enable precise dosing, targeted delivery, and controlled release, making them suitable for a wide range of applications, including vaccine administration, diabetes management, cancer therapy, and cosmetic treatments. Microneedle arrays offer significant advantages such as improved patient compliance due to their painlessness, reduced risk of infection, and the potential for self-administration. However, challenges such as manufacturing complexity, variability in skin penetration, and drug stability remain. Ongoing research and development are focused on overcoming these obstacles, with future directions exploring the integration of microneedles with wearable devices and smart drug delivery systems. Transdermal microneedle technology represents a significant advancement in drug delivery, offering a versatile and patient-friendly alternative to traditional methods.
Keywords: Transdermal drug delivery, Microneedle array technology, Skin permeability, Targeted drug delivery, Controlled release

Cite This Article:

Please cite this article in press Suraj Dubey et al., Advancing Transdermal Drug Delivery: A Comprehensive Review Of Microneedle Array Technologies Indo Am. J. P. Sci, 2024; 11 (09).

Number of Downloads : 10

References:

[1] Mali AD, Bathe R, Patil M. An updated review on transdermal drug delivery systems. Int J Adv Sci Res. 2015;1(6):244–254.
[2] Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, Chen H, Hu H, Zhang Z, Jin Y. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162.
[3] Kumar JA, Pullakandam N, Prabu SL, Gopal V. Transdermal drug delivery system: An overview. Int J Pharm Sci Rev Res. 2010;3(2):49–54.
[4] Roohnikan M, Laszlo E, Babity S, Brambilla DA. Snapshot of transdermal and tropical drug delivery research in Canada. Pharmaceutics. 2019;11(6):256.,
[5] Peña-Juárez MC, Guadarrama-Escobar OR, Escobar-Chávez JJ. Transdermal delivery Systems for Biomolecules. J Pharm Innov. 2021;6:1–14.
[6] Ali H. Transdermal drug delivery system & patient compliance. MOJ Bioequiv Availab. 2017;3(2):47–48.
[7] Leppert W, Malec–Milewska M, Zajaczkowska R, Wordliczek J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23(3):681.
[8] Akhter N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Tech. 2020;65(3):243–272.,
[9] Pires LR, Vinayakumar KB, Turos M, Miguel V, Gaspar J. A perspective on microneedle-based drug delivery and diagnostics in Paediatrics. J Pers Med. 2019;9(4):49.
[10] Tuan-Mahmood T.-M., McCrudden M.T.C., Torrisi B.M., McAlister E., Garland M.J., Singh T.R.R., Donnelly R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013;50:623–637. doi: 10.1016/j.ejps.2013.05.005.
[11] Prausnitz M.R., Mitragotri S., Langer R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004;3:115–124. doi: 10.1038/nrd1304.
[12] Singh T., Mcmillan H., Mooney K., Alkilani A., Donnelly R. Microfluidic Devices for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2013. Microneedles for drug delivery and monitoring; pp. 185–230.
[13] Yang J., Liu X., Fu Y., Song Y. Recent advances of microneedles for biomedical applications: Drug delivery and beyond. Acta Pharm. Sin. B. 2019;9:469–483. doi: 10.1016/j.apsb.2019.03.007.
[14] Thomas B.J., Finnin B.C. The transdermal revolution. Drug Discov. Today. 2004;9:697–703. doi: 10.1016/S1359-6446(04)03180-0.
[15] Alkilani A.Z., McCrudden M.T., Donnelly R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–470. doi: 10.3390/pharmaceutics7040438.
[16] Hegde N.R., Kaveri S.V., Bayry J. Recent advances in the administration of vaccines for infectious diseases: Microneedles as painless delivery devices for mass vaccination. Drug Discov. Today. 2011;16:1061–1068. doi: 10.1016/j.drudis.2011.07.004.
[17] Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019;109:1249–1258. doi: 10.1016/j.biopha.2018.10.078.
[18] Larraneta E., Lutton R.E., Woolfson A.D., Donnelly R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016;104:1–32. doi: 10.1016/j.mser.2016.03.001.
[19] Prausnitz M.R., Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008;26:1261–1268. doi: 10.1038/nbt.1504.
[20] Donnelly R.F., Singh T.R.R., Garland M.J., Migalska K., Majithiya R., McCrudden C.M., Kole P.L., Mahmood T.M.T., McCarthy H.O., Woolfson A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater. 2012;22:4879–4890. doi: 10.1002/adfm.201200864.
[21] Bora P., Kumar L., Bansal A.K. Microneedle technology for advanced drug delivery: Evolving vistas. Rev. Artic. Deaprtment Pharm. Technol. NIPER CRIPS. 2008;9:7–10.
[22] Ogunjimi A.T., Carr J., Lawson C., Ferguson N., Brogden N.K. Micropore closure time is longer following microneedle application to skin of color. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-75246-8.
[23] Haridass I.N., Wei J.C., Mohammed Y.H., Crichton M.L., Anderson C.D., Henricson J., Sanchez W.Y., Meliga S.C., Grice J.E., Benson H.A., et al. Cellular metabolism and pore lifetime of human skin following microprojection array mediation. J. Control. Release. 2019;306:59–68. doi: 10.1016/j.jconrel.2019.05.024.
[24] Kalluri H., Banga A.K. Microneedles and transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2009;19:303–310. doi: 10.1016/S1773-2247(09)50065-2.
[25] Milewski M., Brogden N.K., Stinchcomb A.L. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin. Drug Deliv. 2010;7:617–629. doi: 10.1517/17425241003663228.
[26] Bal S., Kruithof A.C., Liebl H., Tomerius M., Bouwstra J., Lademann J., Meinke M. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys. Lett. 2010;7:242–246. doi: 10.1002/lapl.200910134.
[27] Gill H.S., Prausnitz M.R. Coated microneedles for transdermal delivery. J. Control. Release. 2007;117:227–237. doi: 10.1016/j.jconrel.2006.10.017.
[28] Xie Y., Xu B., Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomed. Nanotechnol. Biol. Med. 2005;1:184–190. doi: 10.1016/j.nano.2005.03.001.
[29] Kim J.-Y., Han M.-R., Kim Y.-H., Shin S.-W., Nam S.-Y., Park J.-H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2016;105:148–155. doi: 10.1016/j.ejpb.2016.06.006.
[30] Lee H., Choi T.K., Lee Y.B., Cho H.R., Ghaffari R., Wang L., Choi H.J., Chung T.D., Lu N., Hyeon T., et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016;11:566–572. doi: 10.1038/nnano.2016.38.
[31] Yu J., Zhang Y., Ye Y., DiSanto R., Sun W., Ranson D., Ligler F.S., Buse J.B., Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA. 2015;112:8260–8265. doi: 10.1073/pnas.1505405112.
[32] Zhang Y., Liu Q., Yu J., Yu S., Wang J., Qiang L., Gu Z. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano. 2017;11:9223–9230. doi: 10.1021/acsnano.7b04348.
[33] Donnelly R.F., Larrañeta E. Microarray patches: Potentially useful delivery systems for long-acting nanosuspensions. Drug Discov. Today. 2018;23:1026–1033. doi: 10.1016/j.drudis.2017.10.013.
[34] Ito Y., Yoshimitsu J.-I., Shiroyama K., Sugioka N., Takada K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J. Drug Target. 2006;14:255–261. doi: 10.1080/10611860600785080.
[35] He X., Sun J., Zhuang J., Xu H., Liu Y., Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose-Response. 2019;17:1559325819878585.