Volume : 11, Issue : 09, September – 2024
Title:
NAVIGATING THE COMPLEXITIES OF AMYOTROPHIC LATERAL SCLEROSIS: CURRENT PERSPECTIVES AND FUTURE DIRECTIONS
Authors :
Numan Sayyad*, Vishal Rasve, Shahid Shaikh, Riyajuddin Kazi, Tashif Shaikh
Abstract :
The progressive neurodegenerative disease known as amyotrophic lateral sclerosis (ALS) is characterized by the death of motor neurons, which eventually results in atrophy, weakening, and paralysis of the muscles. A thorough summary of the state of knowledge regarding ALS is given in this review, which includes information on the disease’s pathophysiology, epidemiology, etiology, clinical manifestations, diagnostic standards, and treatment options. Recent scientific developments—such as the identification of novel therapeutic approaches, biomarker development, and genetic discoveries—are highlighted. The study seeks to draw attention to the difficulties and potential paths forward for ALS clinical care and research.
Degeneration of motor neurons is the cause of the debilitating disease known as amyotrophic lateral sclerosis (ALS). For a variety of reasons, the development of disease-modifying medicines has proven difficult, as it does with all major neurodegenerative conditions. However, ALS is among the select few neurodegenerative illnesses for which treatment with disease-modifying agents is authorized. Over the past ten to fifteen years, significant advancements and discoveries have been achieved in the fields of genetics, pathology, imaging, biomarkers, ALS preclinical models, and clinical readouts. In the meantime, new treatment approaches are being used in high-unmet medical need areas, such as neurodegenerative diseases. Our understanding base has expanded as a result of these advancements, making it possible to identify targeted candidate therapeutics for ALS with a variety of modes of action. In this Review, we go over how this new understanding combined with fresh methods can facilitate efficient translation.
KEYWORDS: amyotrophic lateral sclerosis; epidemiology; pathophysiology; diagnosis; Pharmacological therapies, Incidence and prevalence of ALS, clinical trials, supportive therapy.
Cite This Article:
Please cite this article in press Sandip T.Thoke et al., Navigating The Complexities Of Amyotrophic Lateral Sclerosis: Current Perspectives And Future Directions., Indo Am. J. P. Sci, 2024; 11 (09).
Number of Downloads : 10
References:
1. Amyotrophic Lateral Sclerosis (ALS). (n.d.). National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health information/disorders/amyotrophic-lateral-sclerosis-als
2. Hardiman O, Al‐Chalabi A, Chio A, et al Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3: 17085.
3. Brown RH, Al‐Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377: 162–172.
4. Trainini, J. C., Volman, G., Lago, N., Bordone, J., Ectchegoyen, O., Villasante, F., Heredia, F., Huamanchuco, Y., Docampo, J., & Elena, B. M. (2020). Autologous Mesenchymal Stem Cells for the Treatment of Amyotrophic Lateral Sclerosis. Stem Cell and Regenerative Medicine, 4(3). https://doi.org/10.33425/2639-9512.1053
5. Mehta, P., Kaye, W., Raymond, J., Wu, R., Larson, T., Punjani, R., Heller, D., Cohen, J., Peters, T., Muravov, O., & Horton, K. (2018). Prevalence of Amyotrophic Lateral Sclerosis — United States, 2014. Morbidity and Mortality Weekly Report, 67(7), 216–218. https://doi.org/10.15585/mmwr.mm6707a3
6. Mehta, P., Kaye, W., Raymond, J., Punjani, R., Larson, T., Cohen, J., Muravov, O., & Horton, K. (2018). Prevalence of Amyotrophic Lateral Sclerosis — United States, 2015. Morbidity and Mortality Weekly Report, 67(46), 1285–1289. https://doi.org/10.15585/mmwr.mm6746a1
7. Yamakawa, M., Dwyer, S., Song, X., & Statland, J. (2021). Demographics, clinical characteristics, and prognostic factors of amyotrophic lateral sclerosis in Midwest. Muscle & Nerve, 65(2), 217–224. https://doi.org/10.1002/mus.27450
8. Wei, Y., Zhong, S., Yang, H., Wang, X., Lv, B., Bian, Y., Pei, Y., Xu, C., Zhao, Q., Wu, Y., Luo, D., Wang, F., Sun, H., & Chen, Y. (2024). Current Therapy in Amyotrophic lateral sclerosis (ALS): a review on Past and Future Therapeutic Strategies. European Journal of Medicinal Chemistry, 272, 116496. https://doi.org/10.1016/j.ejmech.2024.116496
9. Oskarsson, B., Gendron, T. F., & Staff, N. P. (2018). Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clinic Proceedings, 93(11), 1617–1628. https://doi.org/10.1016/j.mayocp.2018.04.007
10. Van Den Bos, M. a. J., Geevasinga, N., Higashihara, M., Menon, P., & Vucic, S. (2019). Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. International Journal of Molecular Sciences, 20(11), 2818. https://doi.org/10.3390/ijms20112818
11. Marques, C., Burg, T., Scekic-Zahirovic, J., Fischer, M., & Rouaux, C. (2021). Upper and Lower Motor Neuron Degenerations Are Somatotopically Related and Temporally Ordered in the Sod1 Mouse Model of Amyotrophic Lateral Sclerosis. Brain Sciences, 11(3), 369. https://doi.org/10.3390/brainsci11030369
12. Zakharova, M., & Abramova, A. (2022). Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regeneration Research/Neural Regeneration Research, 17(1), 65. https://doi.org/10.4103/1673-5374.314289.
13. Kwiatkowski, T. J., Bosco, D. A., LeClerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E. J., Munsat, T., Valdmanis, P., Rouleau, G. A., Hosler, B. A., Cortelli, P., De Jong, P. J., Yoshinaga, Y., Haines, J. L., Pericak-Vance, M. A., Yan, J., . . . Brown, R. H. (2009). Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science, 323(5918), 1205–1208. https://doi.org/10.1126/science.1166066
14. Chakraborty, A., & Diwan, A. (2022). Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis. AIMS Neuroscience, 9(4), 423–443. https://doi.org/10.3934/neuroscience.2022023
15. Zinia Pervin, Julia M Stephen . Effect of alcohol on the central nervous system to develop neurological disorder: pathophysiological and lifestyle modulation can be potential therapeutic options for alcohol-induced neurotoxication. AIMS Neuroscience, 2021, 8(3): 390-413. doi: 10.3934/Neuroscience.2021021
16. Ubaid Ansari, Jimmy Wen, Isabel Taguinod, Dawnica Nadora, Denise Nadora, Forshing Lui . Exploring dietary approaches in the prevention and management of Amyotrophic Lateral Sclerosis: A literature review. AIMS Neuroscience, 2023, 10(4): 376-387. doi: 10.3934/Neuroscience.2023028
17. Ubaid Ansari, Vincent Chen, Romteen Sedighi, Burhaan Syed, Zohaer Muttalib, Khadija Ansari, Fatima Ansari, Denise Nadora, Daniel Razick, Forshing Lui . Role of the UNC13 family in human diseases: A literature review. AIMS Neuroscience, 2023, 10(4): 388-400. doi: 10.3934/Neuroscience.2023029
18. Pravin D Potdar, Aashutosh U Shetti . Molecular Biomarkers for Diagnosis & Therapies of Alzheimer’s Disease. AIMS Neuroscience, 2016, 3(4): 433-453. doi: 10.3934/Neuroscience.2016.4.433
19. Taylor J.P., Brown R.H. and Cleveland D.W. (2016) Decoding ALS: from genes to mechanism. Nature, 539, 197–206.
20. Ling S.-C., Polymenidou M. and Cleveland D.W. (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 79, 416–438.
21. Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., van Swieten J.C., Myllykangas L. et al. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS–FTD. Neuron, 72, 257–268.
22. North, F., Luhman, K. E., Mallmann, E. A., Mallmann, T. J., Tulledge-Scheitel, S. M., North, E. J., & Pecina, J. L. (2020). A Retrospective Analysis of Provider-to-Patient Secure Messages: How Much Are They Increasing, Who Is Doing the Work, and Is the Work Happening After Hours? JMIR Medical Informatics, 8(7), e16521. https://doi.org/10.2196/16521
23. Yoshizawa, A., Zhang, C., Chan, K., Ames, H., Myers, J., Schmidt, L., Aggarwal, G., Magda, J., Lin, O., Varney, R., Meier, F., Henry, Z., Bennett, J., Walls, M., Crist, H., Bonert, M., Mortuza, S., & Raab, S. (2013). Quality Assurance. Modern Pathology, 26, 471–489. https://doi.org/10.1038/modpathol.2013.25
24. Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., Liu, S., Zeng, Y., Mehrabi, S., Sohn, S., & Liu, H. (2018). Clinical information extraction applications: A literature review. Journal of Biomedical Informatics, 77, 34–49. https://doi.org/10.1016/j.jbi.2017.11.011
25. MedAcess. (n.d.). Stem Cell Treatment for ALS in Mumbai, India. MedAcess. https://www.medacess.com/treatments/stem-cell-treatment-for-amyotrophic-lateral-sclerosis-als.html
26. Mead, R. J., Shan, N., Reiser, H. J., Marshall, F., & Shaw, P. J. (2022). Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nature Reviews Drug Discovery, 22(3), 185–212. https://doi.org/10.1038/s41573-022-00612-2
27. Jiang, J., Wang, Y., & Deng, M. (2022). New developments and opportunities in drugs being trialed for amyotrophic lateral sclerosis from 2020 to 2022. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.1054006
28. Johnson, S. A., Fang, T., De Marchi, F., Neel, D., Van Weehaeghe, D., Berry, J. D., & Paganoni, S. (2022). Pharmacotherapy for Amyotrophic Lateral Sclerosis: A Review of Approved and Upcoming Agents. Drugs, 82(13), 1367–1388. https://doi.org/10.1007/s40265-022-01769-1
29. Tzeplaeff, L., Wilfling, S., Requardt, M. V., & Herdick, M. (2023). Current State and Future Directions in the Therapy of ALS. Cells, 12(11), 1523. https://doi.org/10.3390/cells12111523
30. Pacher, P., Bátkai, S., & Kunos, G. (2006). The Endocannabinoid System as an Emerging Target of Pharmacotherapy. Pharmacological Reviews, 58(3), 389–462. https://doi.org/10.1124/pr.58.3.2
31. Urbi, B., Broadley, S., Bedlack, R., Russo, E., & Sabet, A. (2019). Study protocol for a randomised, double-blind, placebo-controlled study evaluating the Efficacy of cannabis-based Medicine Extract in slowing the disease pRogression of Amyotrophic Lateral sclerosis or motor neurone Disease: the EMERALD trial. BMJ Open, 9(11), e029449. https://doi.org/10.1136/bmjopen-2019-029449
32. Wong, C., Dakin, R. S., Williamson, J., Newton, J., Steven, M., Colville, S., Stavrou, M., Gregory, J. M., Elliott, E., Mehta, A. R., Chataway, J., Swingler, R. J., Parker, R. A., Weir, C. J., Stallard, N., Parmar, M. K. B., Macleod, M. R., Pal, S., & Chandran, S. (2022). Motor Neuron Disease Systematic Multi-Arm Adaptive Randomised Trial (MND-SMART): a multi-arm, multi-stage, adaptive, platform, phase III randomised, double-blind, placebo-controlled trial of repurposed drugs in motor neuron disease. BMJ Open, 12(7), e064173. https://doi.org/10.1136/bmjopen-2022-064173
33. Meyer, T., Funke, A., Münch, C., Kettemann, D., Maier, A., Walter, B., Thomas, A., & Spittel, S. (2019). Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD). BMC Neurology, 19(1). https://doi.org/10.1186/s12883-019-1443-y
34. Shefner, J. M., Andrews, J. A., Genge, A., Jackson, C., Lechtzin, N., Miller, T. M., Cockroft, B. M., Meng, L., Wei, J., Wolff, A. A., Malik, F. I., Bodkin, C., Brooks, B. R., Caress, J., Dionne, A., Fee, D., Goutman, S. A., Goyal, N. A., Hardiman, O., . . . Rudnicki, S. A. (2020). A Phase 2, Double-Blind, Randomized, Dose-Ranging Trial Of Reldesemtiv In Patients With ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 22(3–4), 287–299. https://doi.org/10.1080/21678421.2020.1822410
35. Xiong, L., McCoy, M., Komuro, H., West, X. Z., Yakubenko, V., Gao, D., Dudiki, T., Milo, A., Chen, J., Podrez, E. A., Trapp, B., & Byzova, T. V. (2022). Inflammation-dependent oxidative stress metabolites as a hallmark of amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 178, 125–133. https://doi.org/10.1016/j.freeradbiomed.2021.11.031
36. Ikeda, K., Iwasaki, Y., & Kaji, R. (2015). Neuroprotective effect of ultra-high dose methylcobalamin in wobbler mouse model of amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 354(1–2), 70–74. https://doi.org/10.1016/j.jns.2015.04.052
37. Arenas A., Chen J., Kuang L., Barnett K.R., Kasarskis E.J., Gal J., Zhu H. Lysine acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS. Hum. Mol. Genet. 2020;29:2684–2697. doi: 10.1093/hmg/ddaa159
38. Schaffert L.-N., Carter W.G. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci. 2020;10:232. doi: 10.3390/brainsci10040232
39. Rhoads S.N., Monahan Z.T., Yee D.S., Shewmaker F.P. The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. Int. J. Mol. Sci. 2018;19:886. doi: 10.3390/ijms19030886.
40. Sanna S., Esposito S., Masala A., Sini P., Nieddu G., Galioto M., Fais M., Iaccarino C., Cestra G., Crosio C. HDAC1 inhibition ameliorates TDP-43-induced cell death in vitro and in vivo. Cell Death Dis. 2020;11:369. doi: 10.1038/s41419-020-2580-3
41. Buratti E. TDP-43 post-translational modifications in health and disease. Expert Opin. Ther. Targets. 2018;22:279–293. doi: 10.1080/14728222.2018.1439923.
42. Banks C.J., Andersen J.L. Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol. 2019;26:101270. doi: 10.1016/j.redox.2019.101270
43. Trist B.G., Genoud S., Roudeau S., Rookyard A., Abdeen A., Cottam V., Hare D.J., White M., Altvater J., Fifita J.A., et al. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain. 2022;145:3108–3130. doi: 10.1093/brain/awac165.
44. Barski A., Cuddapah S., Cui K., Roh T.-Y., Schones D.E., Wang Z., Wei G., Chepelev I., Zhao K. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell. 2007;129:823–837. doi: 10.1016/j.cell.2007.05.009.
45. Wang Z., Zang C., Rosenfeld J.A., Schones D.E., Barski A., Cuddapah S., Cui K., Roh T.-Y., Peng W., Zhang M.Q., et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 2008;40:897–903. doi: 10.1038/ng.154.
46. Wang Z., Zang C., Cui K., Schones D.E., Barski A., Peng W., Zhao K. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–1031. doi: 10.1016/j.cell.2009.06.049.
47. Teng C.-S., Wu B.-H., Yen M.-R., Chen P.-Y. MethGET: Web-based bioinformatics software for correlating genome-wide DNA methylation and gene expression. BMC Genom. 2020;21:375. doi: 10.1186/s12864-020-6722-x.
48. Hunt C.R., Ramnarain D., Horikoshi N., Iyengar P., Pandita R.K., Shay J.W., Pandita T.K. Histone Modifications and DNA Double-Strand Break Repair after Exposure to Ionizing Radiations. Radiat. Res. 2013;179:383–392. doi: 10.1667/RR3308.2.
49. Bennett S.A., Tanaz R., Cobos S.N., Torrente M.P. Epigenetics in amyotrophic lateral sclerosis: A role for histone post-translational modifications in neurodegenerative disease. Transl. Res. 2019;204:19–30. doi: 10.1016/j.trsl.2018.10.002. [PMC free article]
50. Cobos S.N., Bennett S.A., Torrente M.P. The impact of histone post-translational modifications in neurodegenerative diseases. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2019;1865:1982–1991. doi: 10.1016/j.bbadis.2018.10.019.
51. Cobos S.N., Torrente M.P. Epidrugs in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia: Contextualizing a Role for Histone Kinase Inhibition in Neurodegenerative Disease. ACS Pharmacol. Transl. Sci. 2022;5:134–137. doi: 10.1021/acsptsci.1c00265
52. Klingl Y.E., Pakravan D., Bosch L.V.D. Opportunities for histone deacetylase inhibition in amyotrophic lateral sclerosis. Br. J. Pharmacol. 2021;178:1353–1372. doi: 10.1111/bph.15217.
53. Guo W., Naujock M., Fumagalli L., Vandoorne T., Baatsen P., Boon R., Ordovás L., Patel A., Welters M., Vanwelden T., et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 2017;8:861. doi: 10.1038/s41467-017-00911-y
54. Burg T., Rossaert E., Moisse M., Van Damme P., Van Den Bosch L. Histone Deacetylase Inhibition Regulates Lipid Homeostasis in a Mouse Model of Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021;22:11224. doi: 10.3390/ijms222011224
55. Tejido C., Pakravan D., Bosch L.V.D. Potential Therapeutic Role of HDAC Inhibitors in FUS-ALS. Front. Mol. Neurosci. 2021;14:154. doi: 10.3389/fnmol.2021.686995.
56. Fazal R., Boeynaems S., Swijsen A., De Decker M., Fumagalli L., Moisse M., Vanneste J., Guo W., Boon R., Vercruysse T., et al. HDAC6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J. 2021;40:e106177. doi: 10.15252/embj.2020106177.
57. Boutillier A.-L., Tzeplaeff L., Dupuis L. The dark side of HDAC inhibition in ALS. EBioMedicine. 2019;41:38–39. doi: 10.1016/j.ebiom.2019.02.039.
58. Sahana T.G., Zhang K. Mitogen-Activated Protein Kinase Pathway in Amyotrophic Lateral Sclerosis. Biomedicines. 2021;9:969. doi: 10.3390/biomedicines9080969.
59. Buratti E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br. J. Pharmacol. 2021;178:1298–1315. doi: 10.1111/bph.15148.
60. Lingor P., Weber M., Camu W., Friede T., Hilgers R., Leha A., Neuwirth C., Günther R., Benatar M., Kuzma-Kozakiewicz M., et al. ROCK-ALS: Protocol for a Randomized, Placebo-Controlled, Double-Blind Phase IIa Trial of Safety, Tolerability and Efficacy of the Rho Kinase (ROCK) Inhibitor Fasudil in Amyotrophic Lateral Sclerosis. Front. Neurol. 2019;10:293. doi: 10.3389/fneur.2019.00293.
61. Koch J.C., Tatenhorst L., Roser A.-E., Saal K.-A., Tönges L., Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharm. 2018;189:1–21. doi: 10.1016/j.pharmthera.2018.03.008.
62. Hop P.J., Zwamborn R.A.J., Hannon E., Shireby G.L., Nabais M.F., Walker E.M., van Rheenen W., van Vugt J.J.F.A., Dekker A.M., Westeneng H.-J., et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci. Transl. Med. 2022;14:eabj0264. doi: 10.1126/scitranslmed.abj0264.
63. Chestnut B.A., Chang Q., Price A., Lesuisse C., Wong M., Martin L.J. Epigenetic regulation of motor neuron cell death through DNA methylation. J. Neurosci. 2011;31:16619–16636. doi: 10.1523/JNEUROSCI.1639-11.2011.
64. Guo W., Fumagalli L., Bosch L.V.D., Guo W., Fumagalli L., Bosch L.V.D. Targeting Axonal Transport: A New Therapeutic Avenue for ALS. IntechOpen; London, UK: 2020.
65. Zhang K., Donnelly C.J., Haeusler A.R., Grima J.C., Machamer J.B., Steinwald P., Daley E.L., Miller S.J., Cunningham K.M., Vidensky S., et al. The C9ORF72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525:56–61. doi: 10.1038/nature14973.
66. Chou C.-C., Zhang Y., Umoh M.E., Vaughan S.W., Lorenzini I., Liu F., Sayegh M., Donlin-Asp P.G., Chen Y.H., Duong D.M., et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 2018;21:228–239. doi: 10.1038/s41593-017-0047-3.
67. Jovičić A., Mertens J., Boeynaems S., Bogaert E., Chai N., Yamada S.B., Paul J.W., Sun S., Herdy J.R., Bieri G., et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 2015;18:1226–1229. doi: 10.1038/nn.4085.
68. Guo L., Fare C.M., Shorter J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 2019;29:308–322. doi: 10.1016/j.tcb.2018.12.004.
69. McGurk L., Mojsilovic-Petrovic J., Van Deerlin V.M., Shorter J., Kalb R.G., Lee V.M., Trojanowski J.Q., Lee E.B., Bonini N.M. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 2018;6:84. doi: 10.1186/s40478-018-0586-1.
70. Brown D.G., Shorter J., Wobst H.J. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorganic Med. Chem. Lett. 2020;30:126942. doi: 10.1016/j.bmcl.2019.126942.
71. Gao Y., Yan Y., Fang Q., Zhang N., Kumar G., Zhang J., Song L.-J., Yu J., Zhao L., Zhang H.-T., et al. The Rho kinase inhibitor fasudil attenuates Aβ1–42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. Metab. Brain Dis. 2019;34:1787–1801. doi: 10.1007/s11011-019-00487-0.
72. Gugliandolo A., Pollastro F., Bramanti P., Mazzon E. Cannabidiol exerts protective effects in an in vitro model of Parkinson’s disease activating AKT/mTOR pathway. Fitoterapia. 2020;143:104553. doi: 10.1016/j.fitote.2020.104553.
73. Sinha S., Lopes D.H.J., Du Z., Pang E.S., Shanmugam A., Lomakin A., Talbiersky P., Tennstaedt A., McDaniel K., Bakshi R., et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 2011;133:16958–16969. doi: 10.1021/ja206279b.
74. Malik R., Meng H., Wongkongkathep P., Corrales C.I., Sepanj N., Atlasi R.S., Klärner F.-G., Schrader T., Spencer M.J., Loo J.A., et al. The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. J. Biol. Chem. 2019;294:3501–3513. doi: 10.1074/jbc.RA118.005940.
75. Samanta N., Ruiz-Blanco Y.B., Fetahaj Z., Gnutt D., Lantz C., Loo J.A., Sanchez-Garcia E., Ebbinghaus S. Superoxide Dismutase 1 Folding Stability as a Target for Molecular Tweezers in SOD1-Related Amyotrophic Lateral Sclerosis. ChemBioChem. 2022;23:e202200396. doi: 10.1002/cbic.202200396.
76. Di J., Siddique I., Li Z., Malki G., Hornung S., Dutta S., Hurst I., Ishaaya E., Wang A., Tu S., et al. The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. Alzheimer’s Res. Ther. 2021;13:6. doi: 10.1186/s13195-020-00743-x.