Volume : 12, Issue : 04, April – 2025

Title:

MODERN APPROACH TO COMPUTER AIDED DRUG DESIGNING

Authors :

Dr. Somesh Kumar Saxena*, Nageshwar Prasad Jaiswal, Dr. Shailesh Jain

Abstract :

Pharmaceutical Drug Discovery uses chemical biology and computing drug design for efficient identification and optimization of lead connections. Chemical biology is primarily involved in the education of target biological functions and the mechanisms of action of chemical modulators. Computer-aided drug design, on the other hand, uses targets (structured) or structural knowledge about well-known ligands with biological activity (ligand-based) to facilitate the determination of promising candidates. In the meantime, both pharmaceutical companies and academic research groups used a variety of virtual screening techniques to reduce costs and time to discover powerful drugs. Despite the rapid advances in these methods, continuous improvement of future measures for drug discovery is extremely important. The advantages of structure-based and ligand-based drug design demonstrate that its supplementary use and integration into experimental routines have a strong impact on rational drug design. This article outlines its applications in rational drug development integrated with current arithmetic drug design to support the progress of drug discovery.
KEYWORDS: Drug Discovery, Computer-aided drug design, Combinatorial Chemistry, high-through substitution (HTS), New Molecular entity (NME), Virtual screening.

Cite This Article:

Please cite this article in press Somesh Kumar Saxena et al., Modern Approach To Computer Aided Drug Designing., Indo Am. J. P. Sci, 2025; 12(04).

Number of Downloads : 10

References:

1. Leach, A.R.; Gillet, V.J. Molecular modeling: Principles and applications. J. Chem. Inf. Model. 2007, 47, 5–27.
2. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2
3. Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA 2020, 117, 1496–1503. https://doi.org/10.1073/pnas.1914677117
4. Du, Z.; Su, H.;Wang,W.; Ye, L.;Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. https://doi.org/10.1038/s41596-021-00628-9
5. Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. https://doi.org/10.1093/nar/gkh468
6. Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.;Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. https://doi.org/10.1126/science.abj8754
7. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu,W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv 2022, 2020, 500902. https://doi.org/10.1101/2022.07.20.500902
8. Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-resolution de novo structure prediction from primary sequence. bioRxiv 2022. https://doi.org/10.1101/2022.07.21.500999
9. Niazi, S.K.; Mariam, Z. Reinventing Therapeutic Proteins: Mining a treasure of new therapies. Biologics 2023, 3, 72–94. https://doi.org/10.3390/biologics3020005
10. Berendsen, H.J.C.; Van Der Spoel, D.; Van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
11. Harvey, M.; Giupponi, G.; De Fabritiis, G. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem.Theory Comput. 2009, 5, 1632–1639. https://doi.org/10.1021/ct9000685
12. Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.;Wang, L.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.; et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e1005659. https://doi.org/10.1371/journal.pcbi.1005659
13. Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006, 106, 1589–1615. https://doi.org/10.1021/cr040426m
14. Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol. 2008, 443, 365–382. https://www.ncbi.nlm.nih.gov/pubmed/18446297
15. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. https://doi.org/10.1002/jcc.21334
16. Morris, G.M.; Huey, R.; Lindstrom,W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. https://doi.org/10.1002/jcc.21256
17. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. https://doi.org/10.1021/jm0306430
18. . Ewing, T.J.A.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428. https://doi.org/10.1023/A:1011115820450
19. Venkatachalam, C.M.; Jiang, X.; Oldfield, T.; Waldman, M. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 2003, 21, 289–307. https://doi.org/10.1016/S1093-3263(02)00164-X
20. Bitencourt-Ferreira, G.; De Azevedo, W.F. Docking with SwissDock. Methods Mol. Biol. 2019, 2053, 189–202. https://doi.org/10.1007/978-1-4939-9752-7_12
21. Karatzas, E.; Zamora, J.E.; Athanasiadis, E.; Dellis, D.; Cournia, Z.; Spyrou, G.M. ChemBioServer 2.0: An advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing. Bioinformatics 2020, 36, 2602–2604. https://doi.org/10.1093/bioinformatics/btz976
22. Sahoo, R.N.; Pattanaik, S.; Pattnaik, G.; Mallick, S.; Mohapatra, R. Review on the use of Molecular Docking as the First Line Tool in Drug Discovery and Development. Indian J. Pharm. Sci. 2022, 84, 1334–1337. https://doi.org/10.36468/pharmaceutical-sciences.1031