Volume : 12, Issue : 08, August- 2025
Title:
BIODEGRADABLE PLASTICS: A COMPREHENSIVE REVIEW OF MATERIALS, PROPERTIES AND APPLICATIONS
Authors :
Fatima Begum, Noorunnisa Begum, Syeda Sameena Aziz, Mohammad Haji Baba, Shahbaz Fatima, Nawaz Mohammed Khan*
Abstract :
The rapid expansion of plastic use since the mid-20th century has revolutionized industries ranging from packaging and consumer goods to medicine and agriculture. However, the durability and resistance of conventional plastics to natural degradation have generated a global environmental crisis characterized by landfill accumulation, marine plastic pollution, and greenhouse gas emissions. Biodegradable plastics have emerged as a promising alternative to petroleum-based polymers, offering the potential to reduce ecological footprints while maintaining functionality in various applications. This review provides a comprehensive examination of biodegradable plastics, including their classifications, raw materials, manufacturing methods, mechanical and environmental properties, applications, and market trends. Special attention is given to polylactic acid (PLA), polyhydroxyalkanoates (PHA), starch-based plastics, and cellulose-derived polymers, which represent the forefront of research and commercialization. The review further highlights the limitations that hinder widespread adoption, such as cost competitiveness, infrastructure for industrial composting, and performance-related challenges. Finally, it explores future directions including the integration of circular economy models, next-generation feedstocks such as algae, and advanced biotechnological processes. Collectively, this article aims to provide a holistic understanding of biodegradable plastics, their potential to mitigate plastic pollution, and the pathways toward a sustainable plastic economy.
Keywords: Biodegradable plastics, polylactic acid (PLA), polyhydroxyalkanoates (PHA), starch-based plastics, cellulose-derived polymers, sustainable polymers, circular economy, composting infrastructure, next-generation feedstocks, biotechnological processes.
Cite This Article:
Please cite this article in press Nawaz Mohammed Khan et al ., Biodegradable Plastics: A Comprehensive Review Of Materials, Properties And Applications., Indo Am. J. P. Sci, 2025; 12(08).
Number of Downloads : 10
References:
1. European Bioplastics. Bioplastics market data 2022. European Bioplastics Association. 2022. https://www.european-bioplastics.org/market/
2. Gupta A, Singh P, Sharma V. Biomedical applications of polylactic acid and polyhydroxyalkanoates: A review. J Biomed Mater Res B Appl Biomater. 2021;109(12):2421–2436. https://doi.org/10.1002/jbm.b.34827
3. Song J, Murphy R, Narayan R, Davies GBH. Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc B. 2009;364(1526):2127–2139. https://doi.org/10.1098/rstb.2008.0289
4. Shen L, Haufe J, Patel MK. Product overview and market projection of emerging bio-based plastics. PRO-BIP 2009 Report, Utrecht University, The Netherlands. 2009. https://doi.org/10.13140/RG.2.1.3433.7682
5. Grand View Research. Biodegradable plastics market size, share & trends analysis report. Grand View Research. 2022. https://www.grandviewresearch.com/industry-analysis/biodegradable-plastics-market
6. Niaounakis M. Biopolymers: Applications and trends. Elsevier; 2015. ISBN: 9780323354332
7. Zhao S, Zhu K, Pan C, Liu Y. Algae-derived biodegradable plastics: Advances and prospects. Green Chem. 2021;23(10):3775–3790. https://doi.org/10.1039/D1GC00294B
8. Chen G-Q, Patel MK. Plastics derived from biological sources: Present and future. Chem Rev. 2012;112(4):2082–2099. https://doi.org/10.1021/cr200162d
9. Ramesh Kumar S, Shaiju P, O’Connor KE, Pillai SC. Bio-based and biodegradable polymers – State-of-the-art, challenges and emerging trends. Curr Opin Green Sustain Chem. 2020;21:75–81. https://doi.org/10.1016/j.cogsc.2019.12.005
10. MarketsandMarkets. Bioplastics & biopolymers market by type, end-use industry, and region – Global forecast to 2030. MarketsandMarkets. 2023. https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html
11. Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol. 2006;72(2):244–251. https://doi.org/10.1007/s00253-006-0488-1
12. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, Fang X, Auras R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev. 2016;107:333–366. https://doi.org/10.1016/j.addr.2016.03.010
13. Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ Sci Technol. 2018;52(18):10441–10452. https://doi.org/10.1021/acs.est.8b02963
14. Reddy CSK, Ghai R, Rashmi, Kalia VC. Polyhydroxyalkanoates: An overview. Bioresour Technol. 2003;87(2):137–146. https://doi.org/10.1016/S0960-8524(02)00212-2
15. Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog Polym Sci. 2000;25(10):1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6
16. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014;8(11):791–808. https://doi.org/10.3144/expresspolymlett.2014.82
17. Ojijo V, Ray SS. Processing strategies in bionanocomposites. Prog Polym Sci. 2014;39(8):1684–1727. https://doi.org/10.1016/j.progpolymsci.2014.04.003
18. Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: A review. Trends Food Sci Technol. 2008;19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003
19. Arrieta MP, Samper MD, López J, Jiménez A. Combined effect of polyethylene glycol and MMT on the biodegradation and plasticization properties of PLA-based films. Polym Degrad Stab. 2014;107:139–149. https://doi.org/10.1016/j.polymdegradstab.2014.05.020
20. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP. Compostability of bioplastic packaging materials: An overview. Macromol Biosci. 2007;7(3):255–277. https://doi.org/10.1002/mabi.200600168
21. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. https://doi.org/10.1126/sciadv.1700782
22. Karan H, Funk C, Grabert M, Oey M, Hankamer B. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019;24(3):237–249. https://doi.org/10.1016/j.tplants.2018.11.010
23. Aeschelmann F, Carus M. Biobased building blocks and polymers – Global capacities, production and trends 2017–2022. Ind Biotechnol. 2017;13(6):271–279. https://doi.org/10.1089/ind.2017.29102.fae
24. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, et al. Application of bioplastics for food packaging. Trends Food Sci Technol. 2013;32(2):128–141. https://doi.org/10.1016/j.tifs.2013.06.003
25. Yates MR, Barlow CY. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour Conserv Recycl. 2013;78:54–66. https://doi.org/10.1016/j.resconrec.2013.06.010
26. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng. 2020;8(9):3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
27. Dilkes-Hoffman LS, Lane JL, Grant T, Pratt S, Lant PA, Laycock B. Environmental impact of biodegradable food packaging when considering food waste. J Clean Prod. 2018;180:325–334. https://doi.org/10.1016/j.jclepro.2018.01.169
28. Bordes P, Pollet E, Avérous L. Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog Polym Sci. 2009;34(2):125–155. https://doi.org/10.1016/j.progpolymsci.2008.10.002
29. Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. J Polym Environ. 2007;15(2):125–150. https://doi.org/10.1007/s10924-007-0053-8
30. Wu CS. Preparation, characterization and biodegradability of cross-linked starch/poly(vinyl alcohol) blend. Carbohydr Polym. 2003;54(4):383–394. https://doi.org/10.1016/S0144-8617(03)00195-3
31. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ Sci Pollut Res. 2018;25(8):7287–7298. https://doi.org/10.1007/s11356-018-1234-9
32. Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem Soc Rev. 2017;46(22):6855–6871. https://doi.org/10.1039/C7CS00149E
33. Mooney BP. The second green revolution? Production of plant-based biodegradable plastics. Biochem J. 2009;418(2):219–232. https://doi.org/10.1042/BJ20081769
34. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed. 2019;58(1):50–62. https://doi.org/10.1002/anie.201805766
35. Emadian SM, Onay TT, Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017;59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006
36. Shen L, Worrell E, Patel M. Present and future development in plastics from biomass. Biofuels Bioprod Biorefin. 2010;4(1):25–40. https://doi.org/10.1002/bbb.189
37. Posada JA, Roman F, Rafiqul I, Van der Burg S, Patel MK, Cuellar MC. Potential of bio-based materials in a circular economy context. Renew Sustain Energy Rev. 2021;140:110712. https://doi.org/10.1016/j.rser.2021.110712
38. Keshavarz T, Roy I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr Opin Microbiol. 2010;13(3):321–326. https://doi.org/10.1016/j.mib.2010.02.006
39. Müller RJ, Kleeberg I, Deckwer WD. Biodegradation of polyesters containing aromatic constituents. J Biotechnol. 2001;86(2):87–95. https://doi.org/10.1016/S0168-1656(00)00407-7
40. Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, et al. Terminology for biorelated polymers and applications. Pure Appl Chem. 2012;84(2):377–410. https://doi.org/10.1351/PAC-REC-10-12-04
41. Chiellini E, Corti A, D’Antone S, Solaro R. Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym Degrad Stab. 2003;81(2):341–351. https://doi.org/10.1016/S0141-3910(03)00105-1
42. Gross RA, Kalra B. Biodegradable polymers for the environment. Science. 2002;297(5582):803–807. https://doi.org/10.1126/science.297.5582.803
43. Shen L, Patel MK. Life cycle assessment of polysaccharide materials: A review. J Polym Environ. 2008;16(2):154–167. https://doi.org/10.1007/s10924-008-0095-0
44. Chiellini E, Solaro R. Biodegradable polymeric materials. Adv Mater. 1996;8(4):305–313. https://doi.org/10.1002/adma.19960080404
45. Kale G, Auras R, Singh SP, Narayan R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test. 2007;26(8):1049–1061. https://doi.org/10.1016/j.polymertesting.2007.07.006
46. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog Polym Sci. 2013;38(10–11):1653–1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
47. Avérous L, Pollet E. Environmental silicate nano-biocomposites. Springer; 2012. https://doi.org/10.1007/978-1-4614-0804-8
48. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. Biodegradability of plastics. Int J Mol Sci. 2009;10(9):3722–3742. https://doi.org/10.3390/ijms10093722
49. Soroudi A, Jakubowicz I. Recycling of bioplastics, their blends and biocomposites: A review. Eur Polym J. 2013;49(10):2839–2858. https://doi.org/10.1016/j.eurpolymj.2013.07.025
50. Ahmed J, Varshney SK. Polylactides—Chemistry, properties and green packaging technology: A review. Int J Food Prop. 2011;14(1):37–58. https://doi.org/10.1080/10942910903125284