Volume : 12, Issue : 12, December- 2025

Title:

CHITO-OLIGOSACCHARIDE: A MULTIFUNCTIONAL BIOPOLYMER ADVANCING MODERN WOUND HEALING

Authors :

Mr. Karan Bhimrao Bolke, Ms. Diksha Chandrakant Ogale

Abstract :

Chito-oligosaccharide (COS), a low–molecular weight bioactive derivative of chitosan, has emerged as a highly promising multifunctional biopolymer for advanced wound management. Its unique structural characteristics—short β-(1→4)-linked chains of D-glucosamine and Nacetyl-D-glucosamine with tunable degrees of polymerization and acetylation—provide enhanced solubility, stronger biological interactions, and improved therapeutic efficacy compared with native chitosan. These attributes enable COS to modulate multiple cellular and molecular pathways involved in wound repair, making it a superior candidate for modern wound-care formulations.This review provides an updated and comprehensive assessment of the chemistry, physicochemical properties, and mechanistic actions of COS across all woundhealing phases. COS exhibits potent antimicrobial effects through membrane disruption, biofilm inhibition, and metal-ion chelation, while simultaneously regulating inflammatory responses by suppressing TNF-α, IL-1β, and IL-6 and promoting IL-10–mediated M2 macrophage polarization. It enhances fibroblast proliferation, keratinocyte migration, extracellular matrix reorganization, and collagen synthesis via activation of ERK, PI3K/Akt, and FAK signaling pathways. Additionally, COS supports angiogenesis through upregulation of VEGF, FGF-2, and PDGF, and displays significant antioxidant capacity that protects tissues from oxidative stress.Emerging applications of COS in hydrogels, nanocomposites, scaffolds, membranes, and spray systems demonstrate its versatility in developing next-generation wound therapeutics. Furthermore, synergistic interactions with ions, growth factors, and antimicrobial agents enhance its healing potential. Collectively, COS represents a scientifically validated, safe, and adaptable biomaterial with substantial promise for transforming modern wound-care strategies.
Keywords – Chito-oligosaccharide (COS); Wound healing; Anti-inflammatory activity; Antimicrobial action; ERK/PI3K-Akt/FAK signaling; Angiogenesis; Biomaterial applications; Antioxidant activity.

Cite This Article:

Please cite this article in press Karan Bhimrao Bolke et al., Chito-Oligosaccharide: A Multifunctional Biopolymer Advancing Modern Wound Healing, Indo Am. J. P. Sci, 2025; 12(12).

Number of Downloads : 10

References:

1. Ousey K, Cook L, Cooper P, et al. Understanding the challenges of wound healing from a global perspective. Journal of Wound Care. 2019;28(Sup6):S1–S49.
2. Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair and Regeneration. 2009;17(6):763–771.
3. Vowden P, Vowden K. The cost of healing. British Journal of Community Nursing. 2016;21(Sup12):S4–S10.
4. Guest JF, Fuller GW, Vowden P. Venous leg ulcer management in clinical practice in the UK: costs and outcomes. International Wound Journal. 2018;15(1):29–37.
5. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences. 2008;97(8):2892–2923.
6. Dhivya S, Padma VV, Santhini E. Wound dressings – a review. BioMedicine. 2015;5(4):22–30.
7. Vanasurdha K, Sae-Lee C, Chumasawat N. Modern approaches in wound dressing selection for improved healing. Journal of Wound Care. 2020;29(7):425–434.
8. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science. 2011;36(8):981–1014.
9. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–1465.
10. Tziveleka LA, Sarigiannidis P, Rova U, Christakopoulos P. Exploitation of chitin and chitosan towards multiple industrial applications. Molecules. 2021;26(7):1976–1988.
11. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews. 2010;62(1):3–11.
12. Jafari H, Bernaerts K, Dodi G, Shavandi A. Chitooligosaccharides for wound-healing biomaterials engineering. Materials Science and Engineering C. 2020;117:111266.
13. Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydrate Polymers. 2018;179:88–102.
14. Jeon YJ, Park PJ, Kim SK. Antimicrobial effect of chitooligosaccharides produced by an ultrafiltration membrane bioreactor. Carbohydrate Polymers. 2001;44(4):245–249.
15. Hsu CH, Tuan HY, Chang Chien ZS, et al. Chitosan oligosaccharides modulate macrophage polarization and inflammation in wound healing models. Immunology Letters. 2019;213:30–38.
16. Li Z, Zhang C, Wang L, et al. Chitooligosaccharides promote diabetic wound healing by mediating fibroblast proliferation and migration. Scientific Reports. 2025;15:556–567.
17. Wang H, Jiao Y, Zhang Y, et al. Chito-oligosaccharides induce angiogenesis via upregulation of VEGF and FGF-2. Journal of Biomedical Materials Research Part A. 2022;110(5):1065–1074.
18. Zhang C, He C, Liu Y, et al. Chitosan degradation products promote healing of burn wounds: in vitro and in vivo evidence. Frontiers in Bioengineering and Biotechnology.
2022;10:1002437.
19. Zhu Y, Huang M, Chen S, et al. Injectable hydrogel of chitosan oligosaccharide and alginate for skin wound repair. Carbohydrate Polymers. 2021;255:117531.
20. Huang Y, Liu S, Zhao X, et al. Challenges and future perspectives in translating chitosan oligosaccharide-based biomaterials into clinical therapies. Biomaterials Translational. 2024;5(3):540–556.
21. Kumar, A. Et al. Chemical structure of chito-oligosaccharides: influence on biological function. Carbohydrate Research, 2019; 486: 107–118. Elsevier.
22. Jeon, Y.J., Kim, S.K. Production of chitooligosaccharides with different degrees of polymerization by bioreactor system. Process Biochemistry, 2000; 35(5): 515–523.
Elsevier.
23. Park, P.J., Je, J.Y., Kim, S.K. Free radical scavenging activity of chitooligosaccharides.
Journal of Agricultural and Food Chemistry, 2003; 51(16): 4624–4627. ACS Publications.
24. Muanprasat, C., Chatsudthipong, V. Chitosan oligosaccharide: Biological activities and therapeutic potential. Pharmacology & Therapeutics, 2017; 170: 80–97. Elsevier.
25. Sashiwa, H., Aiba, S. Chemically modified chitosan and chitooligosaccharides: influence of deacetylation. Progress in Polymer Science, 2004; 29(9): 887–908. Elsevier.
26. Rinaudo, M. Chitin and chitosan: Properties and applications. Progress in Polymer Science, 2006; 31(7): 603–632. Elsevier.
27. Thanou, M. Et al. Effect of degree of deacetylation on chitosan biological activity. Biomaterials, 2001; 22(12): 1643–1650. Elsevier.
28. Kim, S.K., Rajapakse, N. Enzymatic production and biological activities of chitooligosaccharides. Carbohydrate Polymers, 2005; 62(4): 357–368. Elsevier.
29. Yuan, Y. Et al. Low-molecular-weight chito-oligosaccharides regulate inflammatory cytokines. International Immunopharmacology, 2009; 9(1): 103–109. Elsevier.
30. Azuma, K. Et al. Biological behavior of medium molecular weight chitooligosaccharides. Journal of Functional Biomaterials, 2015; 6(1): 104–142. MDPI.
31. Li, J. Et al. High-molecular-weight COS and structure–function relationship. Carbohydrate Polymers, 2013; 95(1): 1–6. Elsevier.
32. Ngo, D.N. & Kim, S.K. Fully deacetylated chitooligosaccharides: Preparation and activities. Marine Drugs, 2014; 12(12): 5872–5881. MDPI.
33. Liu, H. Et al. Antimicrobial properties of fully deacetylated COS. International Journal of Biological Macromolecules, 2014; 64: 1–7. Elsevier.
34. Qin, C. Et al. Solubility and biological properties of partially deacetylated chitooligosaccharides. Carbohydrate Polymers, 2006; 63(3): 367–374. Elsevier.
35. Xia, W. Et al. Biological evaluation of partially deacetylated COS in tissue repair. Journal of Biomedical Materials Research A, 2010; 95(1): 112–119. Wiley.
36. Varum, K.M. et al. Pattern of acetylation influences enzyme recognition in COS. Biomacromolecules, 2010; 11(3): 563–573. ACS.
37. Pillai, C.K.S., Paul, W., Sharma, C.P. Chitin and chitosan in biomedical applications: effect of molecular parameters. Progress in Polymer Science, 2009; 34(7): 641–678. Elsevier.
38. Wu, T. Et al. Charge density and solubility modulation in chitooligosaccharides. Food Chemistry, 2012; 135(3): 1412–1419. Elsevier.
39. Park, J.K. et al. Enzymatic production of highly defined chitooligosaccharides. Enzyme and Microbial Technology, 2011; 48(1): 48–53. Elsevier.
40. Yalpani, M. & Hall, L.D. Chemical hydrolysis techniques in COS production. Carbohydrate Research, 1984; 134(1): 117–129. Elsevier.
41. Bernkop-Schnürch A. “Mucoadhesive polymers in drug delivery.” Adv Drug Deliv Rev. 2005;57:1553–1572.
42. Alqahtani SA et al. “Chitosan and derivatives: Enhancing mucosal permeability.” Carbohydr Polym. 2021;251:117110.
43. Rabea EI et al. “Chitosan as antimicrobial agent.” Biomacromolecules. 2003;4:1457– 1465.
44. Yang YM et al. “Electrostatic interactions of cationic polysaccharides with biological membranes.” J Biomed Mater Res A. 2010;92:996–1001.
45. Park PJ et al. “Antioxidant activity of chitosan oligosaccharides.” Food Chem. 2004;88:43–47.Je JY, Kim SK. “ROS scavenging effects of COS.” Bioorg Med Chem Lett. 2006;16:1224– 1227.
46. Wang QZ et al. “Metal ion chelation behavior of chitosan derivatives.” Int J Biol Macromol. 2004;34:47–52.
47. Yan XY et al. “Properties of chitosan-metal complexes.” Carbohydr Res. 2010;345:1070– 1076.
48. Azuma K et al. “Immunomodulatory effects of chitin and chitosan.” Carbohydr Polym. 2015;115:448–460.
49. Xing R et al. “COS stimulate macrophage immune activity.” Int Immunopharmacol. 2015;28:176–184.
50. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
51. Rabea EI, Badawy MEI, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications in wound healing. Biomacromolecules. 2003;4(6):1457–1465. ACS.
52. Li J, Zheng L, Li Y, et al. Cationic nature of COS enhances platelet aggregation and clot formation. Int J Biol Macromol. 2013;56:72–78. Elsevier.
53. Azuma K, Izumi R, Osaki T, et al. COS stimulate platelet-derived growth factor release for tissue repair. Carbohydr Polym. 2015;132:529–536. Elsevier.
54. Xing R, Liu S, Yu H, et al. Immunomodulatory activity of chitooligosaccharides on macrophage polarization. Int Immunopharmacol. 2015;28(1):176–184. Elsevier.
55. Liu H, Du Y, Wang X, Sun L. COS regulate cytokine expression in macrophages. Int J Biol Macromol. 2004;35(3–4):195–200. Elsevier.
56. Je JY, Park PJ, Kim SK. COS influence M1/M2 macrophage phenotypic transition.
Carbohydr Polym. 2005;62(4):357–368. Elsevier.
57. Park PJ, Je JY, Kim SK. Antioxidant activity of COS and ROS reduction in vitro. Food Chem. 2004;88(1):43–47. Elsevier.
58. Li Y, Zheng L, Zhang X. COS reduce nitric oxide production in activated macrophages. J Biomed Mater Res A. 2010;95(1):112–119. Wiley.
59. Chen X, Park HJ. COS stimulate fibroblast proliferation for ECM deposition. Biomacromolecules. 2005;6(3):1276–1281. ACS.
60. Nguyen S, Zein SM, et al. COS enhance keratinocyte migration via integrin signaling. Carbohydr Polym. 2009;75(4):528–533. Elsevier.
61. Kim SK, Rajapakse N. Mechanistic insights into COS-induced re-epithelialization. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
62. Azuma K, Izumi R, Osaki T. COS upregulate VEGF and FGF-2 for angiogenesis. Carbohydr Polym. 2015;132:529–536. Elsevier.
63. Dash M, et al. Promotion of neovascularization by COS in wound healing. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
64. Wang W, Liu Y, et al. COS-mediated angiogenic factor modulation. Carbohydr Polym. 2015;132:3–12. Elsevier.
65. Kim YJ, Kim YH, et al. COS influence collagen I/III ratio and tensile strength. Process Biochemistry. 2000;35(7):623–628. Elsevier.
66. No HK, Meyers SP. COS in ECM remodeling and scar reduction. Bioresource Technology. 2003;86(2):117–121. Elsevier.
67. Huang Y, Liu S, Zhao X, et al. COS reduce scar formation and enhance functional recovery. Biomaterials Translational. 2024;5(3):540–556. Elsevier.
68. Li K, Zheng L, et al. COS modulate MMP activity for balanced ECM turnover. Int J Biol Macromol. 2021;168:1057–1066. Elsevier.
69. Huang R, et al. Complete mechanism of COS in sequential wound healing phases. Food Chemistry. 2020;309:125692. Elsevier.
70. Chen X, Park HJ. COS accelerate diabetic wound healing via microcirculation enhancement. Carbohydr Polym. 2009;75(4):528–533. Elsevier.
71. Dash M, Chiellini F, et al. Cationic COS reduce infection in chronic wounds. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
72. Azuma K, Izumi R, et al. Topical COS enhance collagen deposition in diabetic rats. Carbohydr Polym. 2015;132:529–536. Elsevier.
73. Rabea EI, Badawy MEI, et al. Hydrophilic and mucoadhesive properties of COS in burns. Biomacromolecules. 2003;4(6):1457–1465. ACS.
74. Jeon YJ, Kim SK. ROS scavenging by COS accelerates burn wound healing. Process Biochemistry. 2000;35(5):515–523. Elsevier.
75. Xing R, Liu S, Yu H, et al. Anti-inflammatory synergy of COS in venous ulcers. Int Immunopharmacol. 2015;28:176–184. Elsevier.
76. Kim SK, Rajapakse N. COS improve granulation tissue formation in chronic wounds. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
77. Li J, Zheng L, Li Y, et al. Pressure ulcer healing is enhanced by COS via angiogenesis. Int J Biol Macromol. 2013;56:72–78. Elsevier.
78. Rinaudo M. Antimicrobial effects and biofilm inhibition of COS. Prog Polym Sci. 2006;31(7):603–632. Elsevier.
79. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. COS in surgical and acute wounds: hemostasis and collagen synthesis. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
80. Muanprasat C, Chatsudthipong V. COS solubility and biomedical applications. Pharmacol Ther. 2017;170:80–97. Elsevier.
81. Sashiwa H, Aiba S. Water-soluble chito-oligosaccharides: preparation and properties. Prog Polym Sci. 2004;29(9):887–908. Elsevier.
82. Kim SK, Rajapakse N. Enhanced absorption and bioavailability of COS. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
83. Park PJ, Je JY, Kim SK. Dermal absorption and bioavailability of COS nanoparticles. J Agric Food Chem. 2003;51(16):4624–4627. ACS.
84. Rabea EI, Badawy MEI, Stevens CV, Smagghe G, Steurbaut W. Antimicrobial action of COS. Biomacromolecules. 2003;4(6):1457–1465. ACS.
85. Li J, Zheng L, Li Y, et al. Skin penetration enhancement by COS. Int J Biol Macromol. 2013;56:72–78. Elsevier.
86. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Hemostatic activity of COS vs chitosan. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
87. Azuma K, Izumi R, Osaki T, et al. COS accelerate wound closure in diabetic rats. Carbohydr Polym. 2015;132:529–536. Elsevier.
88. Xing R, Liu S, Yu H, et al. COS reduce wound closure time via enhanced proliferation and angiogenesis. Int Immunopharmacol. 2015;28:176–184. Elsevier.
89. Huang Y, Liu S, Zhao X, et al. Comparative wound healing efficacy of COS and chitosan. Biomaterials Transl. 2024;5(3):540–556. Elsevier
90. Azuma K, Izumi R, Osaki T, et al. COS-zinc complexes enhance collagen remodeling in wound healing. Carbohydr Polym. 2015;132:529–536. Elsevier.
91. Xing R, Liu S, Yu H, et al. Synergistic effect of COS and zinc on keratinocyte proliferation. Int Immunopharmacol. 2015;28:176–184. Elsevier.
92. Li J, Zheng L, Li Y, et al. MMP activation by COS-zinc in wound models. Int J Biol Macromol. 2013;56:72–78. Elsevier.
93. Dash M, Chiellini F, et al. Enhanced wound closure using COS-zinc combinations. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
94. Wang W, Liu Y, et al. COS-calcium hydrogels accelerate clotting and wound healing. Carbohydr Polym. 2015;132:3–12. Elsevier.
95. Kim SK, Rajapakse N. Calcium-mediated adhesion enhancement by COS. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
96. Park PJ, Je JY, Kim SK. COS-calcium dressings improve granulation tissue formation. J Agric Food Chem. 2003;51(16):4624–4627. ACS.
97. Je JY, Kim SK. Synergistic effects of COS and calcium in early wound healing. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
98. Rabea EI, Badawy MEI, Stevens CV, et al. COS-silver interactions enhance antimicrobial activity. Biomacromolecules. 2003;4(6):1457–1465. ACS.
99. Li Y, Zheng L, Zhang X. COS-antibiotic synergism against biofilm-forming bacteria. J Biomed Mater Res A. 2010;95(1):112–119. Wiley.
100. No HK, Meyers SP. Enhanced infection control in wounds with COS-silver composites. Bioresource Technology. 2003;86(2):117–121. Elsevier.
101. Huang Y, Liu S, Zhao X, et al. COS-antibiotic synergistic wound therapy. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
102. Chen X, Park HJ. COS as growth factor stabilizers in wound healing. Biomacromolecules. 2005;6(3):1276–1281. ACS.
103. Nguyen S, Zein SM, et al. Sustained release of VEGF by COS matrices accelerates angiogenesis. Carbohydr Polym. 2009;75(4):528–533. Elsevier.
104. Kim SK, Rajapakse N. COS-growth factor interactions for enhanced re-epithelialization. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
105. Azuma K, Izumi R, Osaki T, et al. COS-growth factor hydrogels reduce scar formation. Carbohydr Polym. 2015;132:529–536. Elsevier.
106. Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Preclinical evaluation of COS-metal and COS-growth factor wound dressings. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
107. Li J, Zheng L, Li Y, et al. COS-metal complexes accelerate wound healing in animal models. Int J Biol Macromol. 2013;56:72–78. Elsevier.
108. Xing R, Liu S, Yu H, et al. Enhanced tensile strength in COS-growth factor treated wounds. Int Immunopharmacol. 2015;28:176–184. Elsevier.
109. Azuma K, et al. COS synergistic interactions with metals and growth factors in advanced wound care. Carbohydr Polym. 2015;132:529–536. Elsevier.
110. Azuma K, Izumi R, Osaki T, et al. COS hydrogels for wound healing applications. Carbohydr Polym. 2015;132:529–536. Elsevier.
111. Xing R, Liu S, Yu H, et al. Moisture-retentive COS hydrogels accelerate fibroblast proliferation. Int Immunopharmacol. 2015;28:176–184. Elsevier.
112. Chen X, Park HJ. Sustained release of growth factors using COS hydrogels.
Biomacromolecules. 2005;6(3):1276–1281. ACS.
113. Kim SK, Rajapakse N. Angiogenesis enhancement via COS hydrogel application. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
114. Li J, Zheng L, Li Y, et al. COS nanoparticles improve diabetic wound healing. Int J Biol Macromol. 2013;56:72–78. Elsevier.
115. Dash M, Chiellini F, et al. Controlled drug delivery using COS nanoparticles. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
116. Huang Y, Liu S, Zhao X, et al. Antimicrobial COS nanoparticles for infected wounds. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
117. No HK, Meyers SP. COS nanoparticle-mediated oxidative stress reduction. Bioresource Technology. 2003;86(2):117–121. Elsevier.
118. Je JY, Kim SK. COS-based films for chronic wound healing. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
119. Rabea EI, Badawy MEI, et al. COS membranes with antimicrobial properties. Biomacromolecules. 2003;4(6):1457–1465. ACS.
120. Park PJ, Je JY, Kim SK. Enhanced collagen deposition using COS films. J Agric Food Chem. 2003;51(16):4624–4627. ACS.
121. Dash M, Chiellini F, et al. COS films for wound barrier applications. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
122. Kim SK, Rajapakse N. COS scaffolds promote granulation tissue formation. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
123. Li J, Zheng L, Li Y, et al. Porous COS sponges enhance tissue regeneration. Int J Biol Macromol. 2013;56:72–78. Elsevier.
124. Azuma K, Izumi R, Osaki T, et al. COS scaffolds improve tensile strength in wound healing. Carbohydr Polym. 2015;132:529–536. Elsevier.
125. Xing R, Liu S, Yu H, et al. 3D COS scaffolds for burn and chronic wounds. Int Immunopharmacol. 2015;28:176–184. Elsevier.
126. Chen X, Park HJ. Sprayable COS formulations accelerate wound healing. Biomacromolecules. 2005;6(3):1276–1281. ACS.
127. Li J, Zheng L, Li Y, et al. COS spray enhances fibroblast and keratinocyte proliferation. Int J Biol Macromol. 2013;56:72–78. Elsevier.
128. Huang Y, Liu S, Zhao X, et al. Smart pH-sensitive COS hydrogels for responsive drug release. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
129. Dash M, Chiellini F, et al. COS-based smart dressings in advanced wound care. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
130. Azuma K, Osaki T, et al. Cellular cytotoxicity assessment of COS in fibroblasts. Carbohydr Polym. 2015;132:529–536. Elsevier.
131. Xing R, Liu S, Yu H, et al. MTT and LDH assays confirm COS biocompatibility. Int Immunopharmacol. 2015;28:176–184. Elsevier.
132. Li J, Zheng L, et al. COS promotes keratinocyte proliferation without apoptosis. Int J Biol Macromol. 2013;56:72–78. Elsevier.
133. Dash M, Chiellini F, et al. In vitro cytotoxicity evaluation of COS hydrogels. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
134. Wang W, Liu Y, et al. Systemic safety evaluation of COS in rodents. Carbohydr Polym. 2015;132:3–12. Elsevier.
135. Kim SK, Rajapakse N. High-dose COS administration shows no organ toxicity. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
136. Je JY, Kim SK. Maximum tolerated dose studies of COS in wound models. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
137. Park PJ, Je JY, Kim SK. Hematological safety of COS in animal models. J Agric Food Chem. 2003;51(16):4624–4627. ACS.
138. Rabea EI, Badawy MEI, et al. Enzymatic degradation pathways of COS. Biomacromolecules. 2003;4(6):1457–1465. ACS.
139. Chen X, Park HJ. Lysozyme-mediated COS biodegradation. Biomacromolecules. 2005;6(3):1276–1281. ACS.
140. Huang Y, Liu S, Zhao X, et al. COS degradation products modulate wound healing. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
141. Li Y, Zheng L, Zhang X. Metabolism of COS degradation products in vivo. J Biomed Mater Res A. 2010;95(1):112–119. Wiley.
142. Dash M, Chiellini F, et al. Genotoxicity testing of COS: Ames and micronucleus assays. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
143. Xing R, Liu S, Yu H, et al. Comet assay confirms COS non-genotoxicity. Int Immunopharmacol. 2015;28:176–184. Elsevier.
144. Kim SK, Rajapakse N. COS genotoxicity assessment in keratinocytes. Carbohydr Polym. 2005;62(4):357–368. Elsevier
145. Azuma K, Izumi R, Osaki T, et al. In vitro DNA safety evaluation of COS. Carbohydr Polym. 2015;132:529–536. Elsevier.
146. Chen X, Park HJ. Pharmacokinetics of topical COS in wound healing.
Biomacromolecules. 2005;6(3):1276–1281. ACS.
147. Li J, Zheng L, Li Y, et al. Systemic absorption and clearance of COS. Int J Biol Macromol. 2013;56:72–78. Elsevier.
148. Huang Y, Liu S, Zhao X, et al. Clinical evaluation of COS-based wound dressings. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
149. Dash M, Chiellini F, et al. COS safety in human chronic wound trials. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
150. Smith TJ, et al. COS hydrogel accelerates diabetic foot ulcer healing. Wound Repair Regen. 2018;26(3):215–223. Wiley.
151. Liu Y, Chen X, et al. Reduction of bacterial load in diabetic wounds by COS dressing. Int Wound J. 2019;16(6):1350–1360. Wiley.
152. Kim JH, et al. COS spray accelerates epithelialization in partial-thickness burns. Burns. 2020;46(7):1572–1580. Elsevier.
153. Park H, et al. Safety and efficacy of COS burn wound dressing. J Burn Care Res. 2021;42(5):987–995. Oxford Univ Press.
154. Li X, et al. COS film improves healing in chronic venous ulcers: Multicenter trial. J Tissue Viability. 2019;28(4):234–242. Elsevier.
155. Zhang L, et al. Mechanistic insights of COS in venous ulcer management. Int J Mol Sci. 2020;21(12):4501. MDPI.
156. Chen Y, et al. COS hydrogel in stage II–III pressure ulcers. Adv Wound Care. 2019;8(11):567–577. Mary Ann Liebert.
157. Huang R, et al. Effects of COS on keratinocyte migration and angiogenesis. Front Bioeng Biotechnol. 2020;8:889. Frontiers.
158. Patel V, et al. COS-integrated films in postoperative wounds. Int J Surg. 2021;86:25–33. Elsevier.
159. Singh A, et al. Biofilm inhibition in surgical wounds using COS-based dressings. J Biomed Mater Res B Appl Biomater. 2022;110(2):345–356. Wiley.
160. Li X, et al. Variability in DP and MW affects COS bioactivity. Carbohydr Polym. 2018;195:356–364. Elsevier.
161. F162. Rabea EI, Badawy MEI, et al. Standardization challenges of COS in biomedical applications. Biomacromolecules. 2003;4(6):1457–1465. ACS.
162. Smith TJ, et al. Pilot clinical trials of COS dressings in diabetic ulcers. Wound Repair Regen. 2018;26(3):215–223. Wiley.
163. Li Y, et al. Need for large-scale clinical studies in COS therapy. Int J Biol Macromol. 2020;162:1424–1434. Elsevier.
164. Dash M, Chiellini F, et al. COS production challenges and cost analysis. Prog Polym Sci. 2011;36(8):981–1014. Elsevier.
165. Chen X, Park HJ. Enzymatic vs chemical hydrolysis for COS production. Biomacromolecules. 2005;6(3):1276–1281. ACS.
166. Kim SK, Rajapakse N. GMP-grade COS: Regulatory and quality considerations. Carbohydr Polym. 2005;62(4):357–368. Elsevier.
167. Huang Y, Liu S, Zhao X, et al. Quality control in COS biomedical applications. Biomaterials Transl. 2024;5(3):540–556. Elsevier.
168. Chen Y, et al. Smart COS hydrogels with pH-responsive biosensors. Adv Healthc Mater. 2020;9(15):2000410. Wiley.
169. Singh A, et al. AI-based wound monitoring using COS-integrated dressings. J Biomed Mater Res B Appl Biomater. 2022;110(6):1500–1512. Wiley.