Volume : 12, Issue : 12, December- 2025
Title:
HELICOBACTER PYLORI IS A MAJOR HUMAN PATHOGEN AND IS ASSOCIATED WITH CHRONIC GASTRIC INFLAROLE OF THE GENE HP0102 ENCODING A CONSERVED LPS GLYCOSYLTRANSFERASE IN THE PATHOGENESIS OF HELICOBACTER PYLORI
Authors :
Mrs. Musarrath Mubeen*, Mrs. Laxmi Prasanna, Mrs. Chepuri Apoorva
Abstract :
Peptic ulcer disease and gastric cancer. Contact with host cells is recognized as a signal capable of triggering expression of bacterial genes important for host pathogen interaction. Adherence of H. pylori to the gastric epithelial cell lines AGS and MKN45 strongly upregulated expression of a gene HP0102 in the adhered bacteria as determined by qRT-PCR. In silico analysis suggested that HP0102 shows tremendous sequence conservation among different strains of H. pylori including several Indian clinical isolates and was predicted to encode for a glycosyltransferase enzyme. To elucidate the role of HP0102, a HP0102 knockout strain was constructed (ΔHP0102) and analyzed. The gene was found to be associated with two distinct phenotypes related to pathogenicity. In AGS cell-adhered H. pylori, it has a role in upregulation
of cagA, a major virulence factor and consequent induction of the hummingbird phenotype in the infected AGS cells. HP0102 was also found to be involved in the glycosylation of bacterial lipopolysachharides (LPS) by glycostaining analysis. Bacterial LPS is a major virulence factor triggering the expression of cytokines via TLR 2 and TLR4 dependent signaling cascades.
Results of a cytokine array using the cell culture supernatants of MKN45 cells (expressing both TLR2 and TLR4) infected with either H. pylori wild type or the ΔHP0102 strain suggested that the HP0102 mutant was impaired in inducing the expression of several cytokines including the proinflammatory cytokine IL-8. Further work is under progress to identify more specific functions of HP0102 and also identify other signaling networks that may be affected by LPS and its glycosylation state during the pathogenesis of H. pylori.
Kewords:Helicobacter pylori,inflammation, peptic ulcer disease and gastric cancer,AGS and MKN45,,HP0102 and MKN45 cells.
Cite This Article:
Please cite this article in press Musarrath Mubeen et al., Helicobacter Pylori Is A Major Human Pathogen And Is Associated With Chronic Gastric Inflarole Of The Gene Hp0102 Encoding A Conserved Lps Glycosyltransferase In The Pathogenesis Of Helicobacter Pylori, Indo Am. J. P. Sci, 2025; 12(12).
Number of Downloads : 10
References:
1. Warren, J. R. & Marshall, B. J. (1983). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275.
2. Johannes G. Kusters et al. (2006). Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19(3):449. DOI: 10 10.1128/CMR.00054-05.
3. Tomb J-F, White O, Kerlavage AR et al. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature; 388: 539–547.
4. Kathryn A. Eaton, Joanne V. Gilbert, Elizabeth A. Joyce, Amy E. Wanken, Tracy Thevenot, Patrick Baker, Andrew Plaut, and Andrew Wright. (2002). In Vivo
Complementation of ureB Restores the Ability of Helicobacter pylori To Colonize. Infection and immunity. 70: 771-778.
5. Jimenez-Soto, L. F. et al. (2009). Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5, e1000684.
6. Kwok, T. et al. (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449, 862–866.
7. Peek, R. M., Jr. & Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev.Cancer 2, 28–37.
8. Wu W, Yang Y, Sun G.( 2012). Recent insights into antibiotic resistance in Helicobacter pylori eradication. Gastroenterol. Res. Pract. 2012: 723183.
9. D. Brent Polk and Richard M. Peek, Jr (2010). Helicobacter pylori: gastric cancer and beyond. Nature reviews Vol.10.
11. Costa K. et al. (1999). The morphological transition of Helicobacter pylori cells from spiral to coccoid is preceded by a substantial modification of the cell wall. J. Bacteriol.54 181:3710–3715.
12. Muotiala A., Helander I. M., Pyhala L., Kosunen T. U., Moran A. P. (1992). Low
biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 60: 1714-1716.
13. Logan S. M., Conlan J. W., Monteiro M. A., Wakarchuk W. W., Altman E. (2000). Functional genomics of Helicobacter pylori: identification of a beta-1,4 galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol.
Microbiol. 35:1156–1167.
14. Walz A, Odenbreit S, Stuhler K, et al. (2009). Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesions of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics. 9:1582–1592.
15. Geis G., Leying H., Suerbaum S., Mai U., Opferkuch W. (1989). Ultrastructure and chemical analysis of Campylobacter pylori flagella. J. Clin. Microbiol. 27:436–441.
16. Jones, D. M., and A. Curry. (1989). The ultrastructure of Campylobacter pylori, p. 48 59.In B. J. Rathbone and R. V. Heatley (ed.), Campylobacter pylori and Gastroduodenal Disease. Blackwell Scientific, Oxford, United Kingdom.
17. Mobley, H. L., M. D. Island, and R. P. Hausinger. (1995). Molecular biology of microbial ureases. Microbiol. Rev. 59:451–480.
18. Solnick, J. V. & Schauer, D. B. (2001). Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 14: 59–97.
19. Cesare Montecucco. (2001). Living dangerously: How Helicobacter pylori survive in the human stomach. Molecular Cell Biology. 2:457-466.
20. Ilver D., Arnqvist A., Ögren J., Frick I. M., Kersulyte D., Incecik E. T., Berg D. E., Covacci A., Engstrand L., Borén T. (1998). Helicobacter pylori adhesin binding55 fucosylated histo-blood group antigens revealed by retagging. Science. 279:373–377.
21. Satin, B. et al. (2000). The neutrophil activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor J. Exp. Med. 191:1467–1476.
22. Cynthia M. Sharma et al (2010). The primary transcription of the major human pathogen Helicobacter pylori. Nature; 464: 250-255.
23. David N. Baldwin, Benjamin Shepherd, Petra Kraemer, Michael K. Hall, Laura K.
Sycuro, Delia M. Pinto-Santini and Nina R. Salama (2007) Identification of Helicobacter pylori Genes That Contribute to Stomach Colonization. Infection and Immunity 75(2):1005. doi:10.1128/IAI.01176-06.
24. Matthew A. Croxen, Gary Sisson, Roberto Melano and Paul S.Hoffman (2006) The Helicobacter pylori Chemotaxis Receptor TlpB (HP0103) Is Required for pH Taxis and Colonization of the Gastric Mucosa J.Bacteriol.188(7):2656.doi:10.1128/JB.188.7.2656 2665.2006.
25. SandyR. Pernitzsch, Stephan M. Tirier, Dagmar Beier, and Cynthia M. Sharma (2014) A variable homopolymeric G-repeat defines small RNA mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori.
26. Jones, K., Whitmire, J. and Merrell, D. (2010). A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease. Front. Microbio., 1. 27. Amieva, M. (2003). Disruption of the Epithelial Apical-Junctional Complex by Helicobacter pylori CagA. Science, 300(5624), pp.1430-1434.
28. Mimuro, H., Suzuki, T., Tanaka, J., Asahi, M., Haas, R. and Sasakawa, C. (2002). Grb2 Is a Key Mediator of Helicobacter pylori CagA Protein Activities. Molecular Cell, 10(4),
pp.745-755.
29. Baldwin, D., Shepherd, B., Kraemer, P., Hall, M., Sycuro, L., Pinto-Santini, D. and Salama, N. (2006). Identification of Helicobacter pylori Genes That Contribute to Stomach Colonization. Infection and Immunity, 75(2), pp.1005-1016.




