Volume : 12, Issue : 12, December- 2025

Title:

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DRUG DISCOVERY AND DEVELOPMENT

Authors :

Ms.K.Manga*, Patnala Shivani *, Patlolla Bhavana, Peraka Pavan Sai Balaji, Panjala Nithish, Pillalamarri Dharmateja

Abstract :

Drug design, chemical synthesis, and screening to poly pharmacology and repurposing are just a few of the many applications of artificial intellengence(AI). The pharmaceutical sector has turned to the use of artificial intelligence in order to speed up clinical trials, drug development, and the re-use of drugs. By leveraging AI, the industry can achieve goals faster with lower human effort involved, ultimately accelerating the process of discovery and development.
AI can generate novel ideas for drugs and therapies by analyzing data from genomics, proteomics, and many other life sciences. This accelerates the identification and development of new treatments. Different techniques have been used, like molecular docking, quantum mechanics, and statistical learning, to mine chemical libraries and identify potential novel inhibitors. These methods then have seen significant interest in drug development and, more generally, enable researchers to identify novel therapeutic options. AI in drug discovery is still an emerging field, but it has the potential to really change how new drugs are discovered and developed. With continuous development in AI technology, it could be expected that the future of drug discovery will involve AI even more than today. AI is used in identifying new targets for drugs, in designing new molecular entities, and in predicting the efficacy and safety of candidate drugs.
KEY WORDS: Artificial intelligence, Machine learning, Drug discovery, and Drug development

Cite This Article:

Please cite this article in press K.Manga et al., Artificial Intelligence And Machine Learning In Drug Discovery And Development, Indo Am. J. P. Sci, 2025; 12(12).

Number of Downloads : 10

References:

1. Chaturvedula A, Calad-Thomson S, Liu C, Sale M, Gattu N, Goyal N. Artificial Intelligence and Pharmacometrics: Time to Embrace, Capitalize, and Advance? CPT Pharmacometrics Syst Pharmacol. 2019 Jul;8(7):440-443. doi: 10.1002/psp4.12418. Epub 2019 Jun 5. PMID: 31006175; PMCID: PMC6657004.
2. Lipinski CF, Maltarollo VG, Oliveira PR, da Silva ABF, Honorio KM. Advances and Perspectives in Applying Deep Learning for Drug Design and Discovery. Front Robot AI. 2019 Nov 5;6:108. doi: 10.3389/frobt.2019.00108. PMID: 33501123; PMCID: PMC7805776.
3.Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69S:S36-S40. doi: 10.1016/j.metabol.2017.01.011. Epub 2017 Jan 11. PMID: 28126242.
4. Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, Hickey AJ, Clark AM. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019 May;18(5):435-441. doi: 10.1038/s41563-019-0338-z. Epub 2019 Apr 18. PMID: 31000803; PMCID: PMC6594828.
5. Kokudeva M, Vichev M, Naseva E, Miteva DG, Velikova T. Artificial intelligence as a tool in drug discovery and development. World Journal of Experimental Medicine. 2024 Sep 20;14(3):96042.
6. Kokudeva M, Vichev M, Naseva E, Miteva DG, Velikova T. Artificial intelligence as a tool in drug discovery and development. World Journal of Experimental Medicine. 2024 Sep 20;14(3):96042.
7. Smith RG, Farquhar A. The road ahead for knowledge management: an AI perspective. AI magazine. 2000 Dec 15;21(4):17-.
8. Lamberti MJ, Wilkinson M, Donzanti BA, Wohlhieter GE, Parikh S, Wilkins RG, Getz K. A study on the application and use of artificial intelligence to support drug development. Clinical therapeutics. 2019 Aug 1;41(8):1414-26.
9. Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R, Tong W, Hong H. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC bioinformatics. 2014 Oct 21;15(Suppl 11):S4.
10. Ng HW, Shu M, Luo H, Ye H, Ge W, Perkins R, Tong W, Hong H. Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol A replacement compounds. Chemical research in toxicology. 2015 Sep 21;28(9):1784-95.
11. Hong H, Neamati N, Winslow HE, Christensen JL, Orr A, Pommier Y, Milne GW. Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Antiviral Chemistry and Chemotherapy. 1998 Dec;9(6):461-72.
12. Hong H, Tong W, Xie Q, Fang H, Perkins R. An in silico ensemble method for lead discovery: decision forest. SAR and QSAR in Environmental Research. 2005 Aug 1;16(4):339-47.
13. Hong H, Fang H, Xie Q, Perkins R, Sheehan DM, Tong W. Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. SAR and QSAR in Environmental Research. 2003 Oct 1;14(5-6):373-88.
14. Chakravarty K, Antontsev V, Bundey Y, Varshney J. Driving success in personalized medicine through AI-enabled computational modeling. Drug Discovery Today. 2021 Jun 1;26(6):1459-65.
15. Lourenço MP, Hostaš J, Bellinger C, Tchagang A, Salahub DR. Reinforcement learning for in silico determination of adsorbate—substrate structures. Journal of Computational Chemistry. 2024 Jun 5;45(15):1289-302.
16. Heinzinger M, Rost B. Artificial intelligence learns protein prediction. Cold Spring Harbor Perspectives in Biology. 2024 Sep 1;16(9):a041458.
17. Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT. Artificial intelligence and machine learning technology driven modern drug discovery and development. International Journal of Molecular Sciences. 2023 Jan 19;24(3):2026.
18. Patel V, Shah M. Artificial intelligence and machine learning in drug discovery and development. Intelligent Medicine. 2022 Aug 1;2(3):134-40.
19. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity. 2021 Aug;25(3):1315-60.
20. Gupta U, Pranav A, Kohli A, Ghosh S, Singh D. The contribution of artificial intelligence to drug discovery: Current progress and prospects for the future. Microbial data intelligence and computational techniques for sustainable computing. 2024 Mar 1:1-23.
21. Sharma V, Singh A, Chauhan S, Sharma PK, Chaudhary S, Sharma A, Porwal O, Fuloria NK. Role of artificial intelligence in drug discovery and target identification in cancer. Current Drug Delivery. 2024 Jul 1;21(6):870-86.
22. Visan AI, Negut I. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life. 2024 Feb 7;14(2):233.
23. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert opinion on drug discovery. 2021 Sep 2;16(9):949-59.
24. Blanco-Gonzalez A, Cabezon A, Seco-Gonzalez A, Conde-Torres D, Antelo-Riveiro P, Pineiro A, Garcia-Fandino R. The role of AI in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals. 2023 Jun 18;16(6):891.
25. Verma A, Awasthi A. Revolutionizing drug discovery: the role of artificial intelligence and machine learning. Current Pharmaceutical Design. 2024 Mar 1;30(11):807-10.
26. Paliwal A, Alam MA, Sharma P, Jain S, Dhoundiyal S. Revolutionizing cancer research and drug discovery: The role of artificial intelligence and machine learning. Current Cancer Therapy Reviews. 2025 Apr;21(3):362-72.
27. Ozaybi MQ, Madkhali AN, Alhazmi MA, Alanazi MM, Siraj WH, Zalah AH, Khormi MM, Mashragi TQ, Alotaibi AN, Naji AA, Bagal RM. The role of artificial intelligence in drug discovery and development. Egyptian Journal of Chemistry. 2024 Dec 1;67(13):1541-7.
28. Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nature Machine Intelligence. 2020 Oct;2(10):573-84.
29. Tiwari PC, Pal R, Chaudhary MJ, Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Development Research. 2023 Dec;84(8):1652-63.
30. Qureshi R, Irfan M, Gondal TM, Khan S, Wu J, Hadi MU, Heymach J, Le X, Yan H, Alam T. AI in drug discovery and its clinical relevance. Heliyon. 2023 Jul 1;9(7).
31. Wu Y, Ma L, Li X, Yang J, Rao X, Hu Y, Xi J, Tao L, Wang J, Du L, Chen G. The role of artificial intelligence in drug screening, drug design, and clinical trials. Frontiers in Pharmacology. 2024 Nov 29;15:1459954.
32. Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine learning and artificial intelligence in pharmaceutical research and development: a review. The AAPS journal. 2022 Jan 4;24(1):19.
33. Punukollu M. Machine Learning Models for Predicting Pharmacokinetics and Drug Safety Profiles. American Journal of Data Science and Artificial Intelligence Innovations. 2023 Apr 26;3:389-429.
34. Fabris F, Magalhães JP, Freitas AA. A review of supervised machine learning applied to ageing research. Biogerontology. 2017 Apr;18(2):171-88.
35. Allenbrand C. Supervised and unsupervised learning models for pharmaceutical drug rating and classification using consumer generated reviews. Healthcare Analytics. 2024 Jun 1;5:100288.
36. Yu C, Liu J, Nemati S, Yin G. Reinforcement learning in healthcare: A survey. ACM Computing Surveys (CSUR). 2021 Nov 23;55(1):1-36.
37. Ekins S. The next era: deep learning in pharmaceutical research. Pharmaceutical research. 2016 Sep 6;33(11):2594.
38.Husnain A, Rasool S, Saeed A, Hussain HK. Revolutionizing pharmaceutical research: Harnessing machine learning for a paradigm shift in drug discovery. International Journal of Multidisciplinary Sciences and Arts. 2023 Sep 27;2(4):149-57.
39. Catacutan DB, Alexander J, Arnold A, Stokes JM. Machine learning in preclinical drug discovery. Nature Chemical Biology. 2024 Aug;20(8):960-73.
40. Weissler EH, Naumann T, Andersson T, Ranganath R, Elemento O, Luo Y, Freitag DF, Benoit J, Hughes MC, Khan F, Slater P. The role of machine learning in clinical research: transforming the future of evidence generation. Trials. 2021 Aug 16;22(1):537.
41. Saha GC, Eni LN, Saha H, Parida PK, Rathinavelu R, Jain SK, Haldar B. Artificial intelligence in pharmaceutical Manufacturing: Enhancing quality control and decision making. Rivista Italiana di Filosofia Analitica Junior. 2023;14(2):2023.
42. Kompa B, Hakim JB, Palepu A, Kompa KG, Smith M, Bain PA, Woloszynek S, Painter JL, Bate A, Beam AL. Artificial intelligence based on machine learning in pharmacovigilance: a scoping review. Drug Safety. 2022 May;45(5):477-91.
43. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nature reviews Drug discovery. 2019 Jun;18(6):463-77.
44. Wadighare UA, Deshmukh SP. A review on artificial intelligence and machine learning used in pharmaceutical research. GSC Biol Pharm Sci. 2024;26(1):191–198.
45. Rathour VK, Saxena C, Kumar M, Brijay H. The Role of Artificial Intelligence in Modern Drug Discovery and Development. Asian Journal of Pharmaceutical Research and Development. 2025 Apr 15;13(2):79-81.
46. Dhudum R, Ganeshpurkar A, Pawar A. Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs and Drug Candidates. 2024 Feb 13;3(1):148-71.
47. Verma A, Awasthi A. Revolutionizing drug discovery: the role of artificial intelligence and machine learning. Current Pharmaceutical Design. 2024 Mar 1;30(11):807-10.
48. Ali N, Hanif N, Khan HA, Waseem MA, Saeed A, Zakir S, Khan A, Aamir M, Ali A, Ali A, Saleem A. Deep learning and artificial intelligence for drug discovery, application, challenge, and future perspectives. Discover Applied Sciences. 2025 May 23;7(6):533.
49. Pushkaran AC, Arabi AA. From understanding diseases to drug design: can artificial intelligence bridge the gap?. Artificial Intelligence Review. 2024 Mar 11;57(4):86.
50. Saini JP, Thakur A, Yadav D. AI driven Innovations in Pharmaceuticals: Optimizing Drug Discovery and Industry Operations. RSC Pharmaceutics. 2025.
51. Dubey A, Yadav A. New era’s of artificial intelligence in pharmaceutical industries. Asian Journal of Pharmaceutical Research and Development. 2024 Apr 15;12(2):71-6.
52. Ahmed M, Tomlin S, Tuleu C, Garfield S. Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review. Pharmaceutics. 2024 Sep 14;16(9):1212.
53. Song X, Liu P, Zhang X, Zhou Y, Qian H, Yang K, Zhang X, Gao X, Zheng JJ, Shi X, Zhao Y. In Silico Methods, Simulations, and Design of Drug‐Delivery Nanocarriers. Advanced Functional Materials. 2025:e23068.
54. Gao B, Huang Y, Liu Y, Xie W, Ma WY, Zhang YQ, Lan Y. Pharmagents: Building a virtual pharma with large language model agents. arXiv preprint arXiv:2503.22164. 2025 Mar 28.
55. Niazi SK. Regulatory Perspectives for AI/ML Implementation in Pharmaceutical GMP Environments. Pharmaceuticals. 2025 Jun 16;18(6):901.
56.Patel R, Singh A. New insights into computational drug discovery and manufacturing. J Pharm Innov. 2025;20(2):101–116.
57. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C. Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics. 2024 Oct 14;16(10):1328.
58. Abdeldjouad FZ, Brahami M, Sabri M. Evaluating the effectiveness of artificial intelligence in predicting adverse drug reactions among cancer patients: a systematic review and meta-analysis. In2023 IEEE International Conference Challenges and Innovations on TIC (I2CIT) 2023 Dec 21 (pp. 1-8). IEEE.
59. Bansal C, Deepa PR, Agarwal V, Chandra R. A clustering and graph deep learning-based framework for COVID-19 drug repurposing. Expert Systems with Applications. 2024 Sep 1;249:123560.
60. Gao B, Huang Y, Liu Y, Xie W, Ma WY, Zhang YQ, Lan Y. Pharmagents: Building a virtual pharma with large language model agents. arXiv preprint arXiv:2503.22164. 2025 Mar 28.
61.Simon MC, Laios K, Nikolakakis I, Papaioannou TG. Three-Dimensional Printing Technology in Drug Design and Development: Feasibility, Challenges, and Potential Applications. J Pers Med. 2024;14(11):1080.
62. Calori IR, Lamprou DA. 3D printing in pharmaceuticals and medical applications. Frontiers in Drug Delivery. 2024 Nov 26;4:1527225.
63. Sautha V, Butola M, Chaudhary M, Kumar P, Jakhmola V, Dhyani S. Overview of 3d Printing Technology with Pharmaceutical Applications, Challenges and Future Aspects. Biomedical and Pharmacology Journal. 2025 Feb 20;18(March Spl Edition):17-32.
64. Lin X, Dai L, Zhou Y, Yu ZG, Zhang W, Shi JY, Cao DS, Zeng L, Chen H, Song B, Yu PS. Comprehensive evaluation of deep and graph learning on drug–drug interactions prediction. Briefings in Bioinformatics. 2023 Jul;24(4):bbad235.
65. Ahmad M, Tomlin S, Tuleu C, Garfield S. Real-World Evidence of 3D Printing of Personalised Paediatric Medicines. Pharmaceutics. 2024;16(9):1212.
66. Wang XY, Chen Y, Li YF, Wei CY, Liu MY, Yuan CX, Zheng YY, Qin MH, Sheng YF, Tong XC, Zheng MY. Advancing active compound discovery for novel drug targets: insights from AI-driven approaches. Acta Pharmacologica Sinica. 2025 Jun 17:1-2.
67. Nair S. Explainable AI in Gxp Validation: Balancing Automation, Traceability, And Regulatory Trust in The Pharmaceutical Industry. Clinical Medicine And Health Research Journal. 2025 Sep 2;5(05):1430-42.
68. Aggarwal G, Tripathi A, Sharma HG, Sharma T, Shukla RD, editors. Integrated Technologies in Electrical, Electronics and Biotechnology Engineering. Taylor & Francis Group; 2025 Mar 31.

70. Yuvaraj AR, Jayadurka J, Elavarasi E, Srinivasan R. Applications and Advancement of 3D Printing in Pharmaceutical Manufacturing and Drug Delivery. Journal of Pharma Insights and Research. 2024 Jun 1;2(3):023-9.
71. Kumar R, Singh V, Gupta P. Revolutionizing Pharmaceutical Manufacturing: Advances and Challenges of 3D Printing System and Control. arXiv preprint arXiv:2409.11712. 2024 Sep 18.
72. Dhudum R, Ganeshpurkar A, Pawar A. Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs and Drug Candidates. 2024 Feb 13;3(1):148-71.
73. Abdeldjouad FZ, Brahami M, Sabri M. Evaluating the effectiveness of artificial intelligence in predicting adverse drug reactions among cancer patients: a systematic review and meta-analysis. In2023 IEEE International Conference Challenges and Innovations on TIC (I2CIT) 2023 Dec 21 (pp. 1-8). IEEE.
74. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C. Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics. 2024 Oct 14;16(10):1328.
75.Ali N, Hanif N, Khan HA, Waseem MA, Saeed A, Zakir S, Khan A, Aamir M, Ali A, Ali A, Saleem A. Deep learning and artificial intelligence for drug discovery, application, challenge, and future perspectives. Discover Applied Sciences. 2025 May 23;7(6):533.
76.Pushkaran AC, Arabi AA. From understanding diseases to drug design: can artificial intelligence bridge the gap?. Artificial Intelligence Review. 2024 Mar 11;57(4):86.
77.Pandey BS, Durgapal S, Kumar P, Kukreti G, Jain A, Paliwal G, Kumar M. Unraveling the artificial intelligence role in drug discovery and pharmaceutical product design: an opportunity and challenges. Discover Artificial Intelligence. 2025 May 25;5(1):72.
78.Saini JP, Thakur A, Yadav D. AI driven Innovations in Pharmaceuticals: Optimizing Drug Discovery and Industry Operations. RSC Pharmaceutics. 2025.
79.Rathour VK, Saxena C, Kumar M, Brijay H. The Role of Artificial Intelligence in Modern Drug Discovery and Development. Asian Journal of Pharmaceutical Research and Development. 2025 Apr 15;13(2):79-81.
80.Verma A, Awasthi A. Revolutionizing drug discovery: the role of artificial intelligence and machine learning. Current Pharmaceutical Design. 2024 Mar 1;30(11):807-10.
81.Yuvaraj AR, Jayadurka J, Elavarasi E, Srinivasan R. Applications and Advancement of 3D Printing in Pharmaceutical Manufacturing and Drug Delivery. Journal of Pharma Insights and Research. 2024 Jun 1;2(3):023-9.
82.Dubey A, Yadav A. New era’s of artificial intelligence in pharmaceutical industries. Asian Journal of Pharmaceutical Research and Development. 2024 Apr 15;12(2):71-6.
83.Gao B, Huang Y, Liu Y, Xie W, Ma WY, Zhang YQ, Lan Y. Pharmagents: Building a virtual pharma with large language model agents. arXiv preprint arXiv:2503.22164. 2025 Mar 28.
84.Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Advanced drug delivery reviews. 2019 Nov 1;151:169-90.
85.Luo M, Feng Y, Wang T, Guan J. Micro‐/nanorobots at work in active drug delivery. Advanced Functional Materials. 2018 Jun;28(25):1706100.
86.Fu, J. and Yan, H. (2012) Controlled drug release by a nanorobot. Nat. Biotechnol. 30, 407–408.
87.Kraus VB. Biomarkers as drug development tools: discovery, validation, qualification and use. Nature Reviews Rheumatology. 2018 Jun;14(6):354-62.
88.Cramer III RD, Bunce JD, Patterson DE, Frank IE. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quantitative Structure‐Activity Relationships. 1988;7(1):18-25.
89.Li Y, Zhang L, Wang Y, Zou J, Yang R, Luo X, Wu C, Yang W, Tian C, Xu H, Wang F. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nature Communications. 2022 Nov 12;13(1):6891.
90.Yang S, Hwang D, Lee S, Ryu S, Hwang SJ. Hit and lead discovery with explorative rl and fragment-based molecule generation. Advances in Neural Information Processing Systems. 2021 Dec 6;34:7924-36.
91.Skalic M, Jiménez J, Sabbadin D, De Fabritiis G. Shape-based generative modeling for de novo drug design. Journal of chemical information and modeling. 2019 Feb 14;59(3):1205-14.
92.Hartenfeller M, Schneider G. Enabling future drug discovery by de novo design. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2011 Sep;1(5):742-59.
93.Schneider P, Schneider G. De novo design at the edge of chaos: Miniperspective. Journal of medicinal chemistry. 2016 May 12;59(9):4077-86.
94.Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug discovery today. 2015 Mar 1;20(3):318-31.
95.Vyas V, Jain A, Jain A, Gupta A. Virtual screening: a fast tool for drug design. Scientia Pharmaceutica. 2008 Sep;76(3):333-60.
96.Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput screening data analysis. Nature biotechnology. 2006 Feb 1;24(2):167-75.
97.Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artificial intelligence review. 2022 Mar;55(3):1947-99.
98.Shockley KR, Gupta S, Harris SF, Lahiri SN, Peddada SD. Quality control of quantitative high throughput screening data. Frontiers in genetics. 2019 May 9;10:387.
99.Wan F, Zeng J. Deep learning with feature embedding for compound-protein interaction prediction. Biorxiv. 2016 Nov 7:086033.
100.AlQuraishi M. End-to-end differentiable learning of protein structure. Cell systems. 2019 Apr 24;8(4):292-301.
101.Hutson M. AI protein-folding algorithms solve structures faster than ever. Nature. 2019 Jul 22;1(1):5.
102.Avdagic Z, Purisevic E, Omanovic S, Coralic Z. Artificial intelligence in prediction of secondary protein structure using CB513 database. Summit on translational bioinformatics. 2009 Mar 1;2009:1.
103.Tian K, Shao M, Wang Y, Guan J, Zhou S. Boosting compound-protein interaction prediction by deep learning. Methods. 2016 Nov 1;110:64-72.
104.Wang F, Liu D, Wang H, Luo C, Zheng M, Liu H, Zhu W, Luo X, Zhang J, Jiang H. Computational screening for active compounds targeting protein sequences: methodology and experimental validation. Journal of chemical information and modeling. 2011 Nov 28;51(11):2821-8.
105.Pellat G, Anghelache C. Governance in the EU Member States in the Era of Big Data.
106.Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intelligent Pharmacy. 2024 Jun 1;2(3):367-80.
107.Yang F, Zhang Q, Ji X, Zhang Y, Li W, Peng S, Xue F. Machine learning applications in drug repurposing. Interdisciplinary Sciences: Computational Life Sciences. 2022 Mar;14(1):15-21.
108.Vidhya KS, Sultana A, Kumar N, Rangareddy H, KS V, Madalageri NK. Artificial intelligence’s impact on drug discovery and development from bench to bedside. Cureus. 2023 Oct 22;15(10).
109.Jämsä-Jounela SL. Future trends in process automation. Annual Reviews in Control. 2007 Jan 1;31(2):211-20.
110.Davenport TH, Ronanki R. Artificial intelligence for the real world. Harvard business review. 2018 Jan 1;96(1):108-16.