Volume : 12, Issue : 02, February – 2025
Title:
PHARMACOLOGICAL EVALUATION OF BOLDINE ON PENTYLENETETRAZOLE (PTZ)-INDUCED CONVULSIONS IN LABORATORY MICE
Authors :
Ms. Sonal S. Ithape*, Dr. Kamble H.V, Mr. Sugriv R. Ghodake, Dr. A.D Kandhare, Dhananjay Narsale
Abstract :
Neurological disorders, including epilepsy and seizures, affect millions globally, with limited treatment options in developing regions. This study investigated the anticonvulsant potential of Boldine, a bioactive compound known for its diverse pharmacological activities, including antioxidant, gastroprotective, hepatoprotective, and anticancer effects. The study assessed the effects of Boldine at doses of 25, 50, and 100 mg/kg against pentylenetetrazole (PTZ)-induced seizures in mice, with diazepam as the standard. Key parameters evaluated included brain neurotransmitter levels (GABA, dopamine, serotonin), oxidative stress markers (SOD, GSH, MDA, nitric oxide), and Na+/K+ ATPase activity. Boldine showed significant anticonvulsant effects by increasing seizure onset, reducing convulsion duration, improving locomotor activity, restoring neurotransmitter levels, and enhancing antioxidant defenses. These findings suggest Boldine’s potential as a promising anticonvulsant agent. However, further studies are required to determine its precise mechanism of action and therapeutic application.
Keywords: Boldine, anticonvulsant activity, PTZ-induced seizures, GABA, oxidative stress, diazepam, SOD, GSH, MDA, Na+/K+ ATPase, neurotransmitter modulation, bioactive compounds. etc.
Cite This Article:
Please cite this article in press Sonal S. Ithape et al., Pharmacological Evaluation Of Boldine On Pentylenetetrazole (PTZ)-Induced Convulsions In Laboratory Mice., Indo Am. J. P. Sci, 2025; 12 (02).
Number of Downloads : 10
References:
1. Magiorkinis E, Diamantis A, Sidiropoulou K, Panteliadis C. Highlights in the history of epilepsy: the last 200 years. Epilepsy Res.Treat. 2014; 2014:5820-39.
2. Sidiropoulou K, Diamantis A, Magiorkinis E. Hallmarks in 18th- and 19th-century epilepsy research. Epilepsy Behav. 2010;18(3):151-161.
3. Diamantis A, Sidiropoulou K, Magiorkinis E. Epilepsy during the middle ages, the renaissance and the enlightenment. J Neurol. 2010;257(5):691-698.
4. Sen A, Jette N, Husain M, Sander JW. Epilepsy in older people. Lancet. 2020 Feb 29;395(10225):735-748.
5. Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185–91.
6. Zhao Y, Li X, Zhang K, Tong T, Cui R. The Progress of Epilepsy after Stroke. Curr.Neuropharmacol.2018;16(1):7178.
7. So EL, Annegers JF, Hauser WA, O’Brien PC, Whisnant JP. Population-based study of seizure disorders after cerebral infarction. Neurology. 1996 Feb;46(2):350-5.
8. Denier C, Masnou P, Mapoure Y, et al. Watershed Infarctions Are More Prone Than Other Cortical Infarcts to Cause Early-Onset Seizures. Arch Neurol. 2010;67(10)
9. Chen J, Ye H, Zhang J, et al. Pathogenesis of seizures and epilepsy after stroke. Acta Epileptologica. 2022;4(1):2.
10. Mizielinska SM, Greenwood SM, Tummala H, Connolly CN. Rapid dendritic and axonal responses to neuronal insults. Biochem Soc Trans. 2009;37(Pt 6):1389-1393.
11. Sun DA, Sombati S, DeLorenzo RJ. Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced “epilepsy”. Stroke. 2001;32(10):2344-2350.
12. Kessler KR, Schnitzler A, Classen J, Benecke R. Reduced inhibition within primary motor cortex in patients with poststroke focal motor seizures. Neurology. 2002; 59(7):1028-1033.
13. Kharlamov EA, Downey KL, Jukkola PI, Grayson DR, Kelly KM. Expression of GABA alpha receptor alpha1 subunit mRNA and protein in rat neocortex following photothrombotic infarction. Brain Res. 2008; 1210:29-38.
14. Bierbower SM, Choveau FS, Lechleiter JD, Shapiro MS. Augmentation of M-type (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. J Neurosci. 2015; 35(5):2101-2111.
15. Ooi L, Gigout S, Pettinger L, Gamper N. Triple cysteine module within M-type K+ channels mediates reciprocal channel modulation by nitric oxide and reactive oxygen species. J Neurosci. 2013; 33(14):6041-6046.
16. Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci. 2005;6(11):850-862.
17. Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007;8(6):451-465.
18. Hartshorne RP, Messner DJ, Coppersmith JC, Catterall WA. The saxitoxin receptor of the sodium channel from rat brain. J Biol Chem. 1982;257(23):13888-13891.
19. Engelborghs S, D’Hooge R, De Deyn PP. Pathophysiology of epilepsy. Acta Neurol Belg. 2000;100(4):201-213.
20. Gidal BE, Garnett WR. Epilepsy. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, eds. Pharmacotherapy: a pathophysiologic approach. 6th ed. USA: McGraw-Hill Companies Inc; 2005.
21. Waheed A, Pathak S, Mirza R; Epilepsy: A brief review; PharmaTutor; 2016; 4(9); 21-28.
22. Fassbender K, Schmidt R, Mossner R, Daffertshofer M, Hennerici M. Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke. 1994;25(6):1105-1108.
23. Virgin CE Jr, Ha TP, Packan DR, Tombaugh GC, Yang SH, Horner HC, et al. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem. 1991;57(4):1422-1428.
24. 1. Tombaugh GC, Yang SH, Swanson RA, Sapolsky RM. Glucocorticoids exacerbate hypoxic and hypoglycemic hippocampal injury in vitro: biochemical correlates and a role for astrocytes. J Neurochem. 1992;59(1):137-146.
25. Kanner AM, Scharfman H, Jette N, Anagnostou E, Bernard C, Camfield C, et al. Epilepsy as a network disorder (1): what can we learn from other network disorders such as autistic spectrum disorder and mood disorders? Epilepsy Behav. 2017;77:106-113.
26. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45(9):1085-1095.
27. Thurman DJ, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52(Suppl 7):2-26.
28. Waheed A, Pathak S, Mirza R. Epilepsy: A brief review. PharmaTutor. 2016;4(9):21-28.
29. Rang HP, Dale MM, Ritter JM, Moore PK. Pharmacology. 5th ed. New Delhi: Churchill Livingstone Reed Elsevier India (P) Ltd; 2006:550-560.
30. Wolf P. Of cabbages and kings: Some considerations on classifications, diagnostic schemes, semiology, and concepts. Epilepsia. 2003;44(1):1-4.
31. Rudzinski LA, Shih JJ. The Classification of Seizures and Epilepsy Syndromes. Novel Aspects on Epilepsy. 2011.
32. Patsalos PN, Landmark CJ. Drug interactions involving the new second and third generation Anti-epileptic Drugs. Expert Rev Neurother. 2010;10(1):119-140.
33. Luszczki JJ. Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions. Pharmacol Rep. 2009;61(2):197-216.
34. Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanism of action: the evidence reviewed. Epilepsia. 2000;41(11):1364-1374.
35. Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of Action of Antiepileptic Drugs. Current Topics in Medicinal Chemistry. 2005;5(1):3-14.
36. Saxena VS, Nadkarni VV. Nonpharmacological treatment of epilepsy. Ann Indian Acad Neurol. 2011;14(3):148-152.
37. Gaby AR. Natural Approaches to Epilepsy. Alternative Medicine Review. 2007;12(1):9-24.
38. Lander CM. Antiepileptic drug in pregnancy & lactation. Australian Prescriber. 2008;31:70-72.
39. 1. Lamba D, Dwivedi DK, Yadav M, Kumar Yr S. Boldine: a narrative review of the bioactive compound with versatile biological and pharmacological potential. J Complement Integr Med. 2024 Jan 19.
40. 2. Moezi, Leila; Yahosseini, Siranoush; Jamshizadeh, Akram; Pirsalami, Fateme, Acute Boldine Treatment Induces Anti-convulsant Effects in Mice through its Antioxidant Activity Drug Research 2019; 69(04): 227 – 233
41. 3. Dhingra D, Soni K. Behavioral and biochemical evidences for nootropic activity of boldine in young and aged mice. Biomed Pharmacother. 2018 Jan; 97:895-904.
42. 4.Lau YS, Ling WC, Murugan D, Mustafa MR. Boldine Ameliorates Vascular Oxidative Stress and Endothelial Dysfunction: Therapeutic Implication for Hypertension and Diabetes. J Cardiovasc Pharmacol. 2015 Jun;65(6):522-31. doi: 10.1097/FJC.0000000000000185. PMID: 25469805; PMCID: PMC4461386.
43. 5.Burrell Justin C., Vu Phuong T., Alcott Owen J. B., Toro Carlos A., Cardozo Christopher, Cullen D. Kacy,Orally administered boldine reduces muscle atrophy and promotes neuromuscular recovery in a rodent model of delayed nerve repair ,Frontiers in Cellular Neuroscience VOLUME,17 ,2023.
44. 6.Shuker E, Farhood M, Al-Qudaihi G, Fouad D. Potential Effects of Boldine on Oxidative Stress, Apoptosis, and Inflammatory Changes Induced by the Methylprednisolone Hepatotoxicity in Male Wistar Rats. Dose Response. 2022 Mar 27;20(1),
45. 7.Moezi L, Yahosseini S, Jamshizadeh A, Pirsalami F. Acute Boldine Treatment Induces Anti-convulsant Effects in Mice through its Antioxidant Activity. Drug Res (Stuttg). 2019 Apr;69(4):227-233.
46. 8.Li W, Veeraraghavan VP, Ma W. Effects of Boldine on Antioxidants and Allied Inflammatory Markers in Mouse Models of Asthma. J Environ Pathol Toxicol Oncol. 2020;39(3):225-234.
47. 9. Zetler G. Neuroleptic-like, anticonvulsant and antinociceptive effects of aporphine alkaloids: bulbocapnine, corytuberine, boldine and glaucine. Arch Int Pharmacodyn Ther. 1988 Nov-Dec;296:255-81.
48. 10.Asencio M, Delaquerrière B, Cassels BK, Speisky H, Comoy E, Protais P. Biochemical and behavioral effects of boldine and glaucine on dopamine systems. Pharmacol Biochem Behav. 1999 Jan; 62(1):7-13.




