Volume : 12, Issue : 01, January – 2025
Title:
LIPOSOMAL DRUG DELIVERY SYSTEMS: A POTENTIAL PLATFORM FOR ANTI-CANCER THERAPIES
Authors :
Shivani S. Wankhade, Sakshi P Shrinath, Janvi P. Joshi, Aditi V. Tikait, Dr. Swati P. Deshmukh
Abstract :
Liposomal drug delivery systems have emerged as a promising approach in the treatment of cancer, addressing challenges such as poor solubility, rapid clearance, and systemic toxicity of conventional chemotherapy. Liposomes are nanoscale, lipid bilayer vesicles capable of encapsulating both hydrophilic and hydrophobic drugs, enhancing their stability and bioavailability. Their biocompatibility, biodegradability, and ability to be functionalized with targeting ligands allow for site-specific drug delivery, reducing off-target effects and improving therapeutic outcomes. Advances in liposomal formulations, including stealth liposomes and ligand-targeted variants, have further refined their efficacy by evading immune detection and improving tumor selectivity. Several liposomal chemotherapeutics, such as doxorubicin and paclitaxel, have been approved or are in clinical trials, demonstrating enhanced efficacy and reduced toxicity compared to free drugs. Despite their potential, challenges such as manufacturing complexity, stability, and drug release control remain. This abstract reviews the principles, applications, and advancements of liposomal drug delivery systems in cancer therapy, highlighting their role in personalized and targeted oncology treatments.
Keywords: Chemotherapy, Nanoscale lipid bilayers, Targeting ligands, Paclitaxel, oncology
Cite This Article:
Please cite this article in press Shivani S. Wankhade et al., Liposomal Drug Delivery Systems: A Potential Platform For Anti-Cancer Therapies.,Indo Am. J. P. Sci, 2025; 12 (01).
Number of Downloads : 10
References:
1. Gregoriadis G. Liposomes as carriers of drugs and vaccines. Sci Am. 1976;234(5):24-32.
2. Trucillo P, Campardelli R, Reverchon E. Liposomes: From Bangham to supercritical fluids. Processes. 2020;8(8):1002.
3. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. Https://doi.org/10.1186/1556-276X-8-102.
4. Kulkarni S, Feng SS. Effects of cholesterol on the stability of drug-loaded liposomes: experimental and modeling studies. J Liposome Res. 2013;23(1):58-68. Https://doi.org/10.3109/08982104.2012.742722.
5. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv Rev. 2013;65(1):36-48. Https://doi.org/10.1016/j.addr.2012.09.037.
6. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123-40.
7. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinetics. 2003;42(5):419-36.
8. Zhang X, Shan Y, Dong X. Cationic liposomes for gene delivery. J Drug Target. 2012;20(1):49-56.
9. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46(12 Pt 1):6387-92.
10. Drummond DC, Zignani M, Leroux JC. Current status of ph-sensitive liposomes in drug delivery. Prog Lipid Res. 2000;39(5):409-60.
11. Wagner A, et al. Antibody-targeted liposomes for cancer therapy: design considerations. Methods Enzymol. 2006;391:367-91.
12. Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van der Meer JWM, Boerman OC. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292(3):1071-9.
13. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238-52.
14. Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298(4):1015-9.
15. Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986;858(1):161-8.
16. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969;8(1):344-52.
17. Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta. 1979;557(1):9-23.
18. Mehraji S, devoe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. Lab Chip. 2024;24:1154-74.
19. Ohsawa T, Miura H, Harada K. Evaluation of a new liposome preparation technique, the freeze-thawing method, using L-asparaginase as a model drug. Chem Pharm Bull. 1985;33(7):2916-23.
20. Peters JR, Kreuter J. Dehydration-rehydration of liposomes: a new method for the preparation of liposome-encapsulated drugs. Int J Pharm. 1992;82(1-2):143-9.
21. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. Doi: 10.1016/j.addr.2012.09.037.
22. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2099-116. Doi: 10.1007/s11095-008-9661-1.
23. Fidler IJ. The role of the microenvironment in the biology of tumor cells. Cancer Res. 2003;63(8):2366-71. Doi: 10.1158/0008-5472.CAN-03-0198.
24. Bhandari SR, Srivastava S. Overview of cancer therapy. World J Clin Oncol. 2020;11(5):399-415. Doi: 10.5306/wjco.v11.i5.399.
25. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. Doi: 10.3322/caac.21551.
26. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality, and possibility. Clin Cancer Res. 2011;17(21):6938-44. Doi: 10.1158/1078-0432.CCR-11-175.
27. Patil YB, Khedkar VM. Targeting of nanoparticles in cancer therapy: A review. Adv Pharm Bull. 2015;5(4):477-86. Doi: 10.15171/apb.2015.062.
29. Kumar S, Nagesh PK. Stimuli-responsive liposomes for targeted drug delivery in cancer therapy. Drug Deliv. 2017;24(1):1-17. Doi: 10.1080/10717544.2016.1211500.
30. Chen C, et al. Liposome-based drug delivery systems for photodynamic therapy: An overview. Drug Deliv. 2018;25(1):1684-95. Doi: 10.1080/10717544.2018.1486655.




