Volume : 12, Issue : 03, March – 2025
Title:
PHARMACOLOGICAL EVALUATION OF THE ANTIDEPRESSANT POTENTIAL OF BOSWELLIA SERRATA IN ALLOXAN-INDUCED DIABETIC RATS
Authors :
Shankar D. Gore*, Dr. Hemant Kamble, Prof. Sugriv R. Ghodake, Prof. Sourabh P. Bhosale
Abstract :
Diabetes mellitus is a growing global health crisis, often accompanied by complications such as depression, which further worsen disease management and prognosis. This study explores the therapeutic potential of Boswellia serrata extract in alleviating diabetes-induced depression using a rat model. Diabetes was induced using alloxan, and behavioral as well as biochemical alterations were assessed, focusing on oxidative stress, neurotransmitter levels, and neurobehavioral changes, including immobility in forced swim and tail suspension tests. Treatment with Boswellia serrata extract demonstrated significant efficacy in reducing depressive symptoms in diabetic rats by lowering blood glucose levels, decreasing immobility duration, and mitigating oxidative stress. Notably, Boswellia serrata, particularly at a dose of 400 mg/kg, effectively countered diabetes-associated physiological and behavioral disturbances, including weight loss, hyperphagia, polydipsia, polyuria, and anxiety-like behaviors. Although its effects were notable, they were generally less potent than those of fluoxetine, a standard antidepressant. The findings suggest that Boswellia serrata could serve as a promising herbal intervention for managing diabetes-associated depression, offering metabolic and neuroprotective benefits alongside glycemic control.
Keywords: Diabetes mellitus, depression, Boswellia serrata, Fluoxetine, alloxan, oxidative stress.
Cite This Article:
Please cite this article in press Shankar D. Gore et al., Pharmacological Evaluation Of The Antidepressant Potential Of Boswellia Serrata In Alloxan-Induced Diabetic Rats., Indo Am. J. P. Sci, 2025; 12 (03).
Number of Downloads : 10
References:
1. Abdel-Barry J, Abdel-Hassan I, Al-Hakiem M. Hypoglycaemic and antihyperglycaemic effects of Trigonella foenum-graecum leaf in normal and alloxan-induced diabetic rats. J Ethnopharmacol. 1997;58(3):149-55.
2. Acharya SN, Thomasland JE, Basu SK. Fenugreek: an “old world” crop for the “new world”. Biodiversity (Trop Conserv). 2006;7(3-4):27-30.
3. Ahlgren SC, Levine JD. Protein kinase C inhibitors decrease hyperalgesia and C-fiber hyperexcitability in the streptozotocin-diabetic rat. J Neurophysiol. 1994;72(2):684-92.
4. Ahsan H, Ali A, Ali R. Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol. 2003;31(4):398-404.
5. Ajabnoor M, Tilmisany A. Effect of Trigonella foenum-graecum on blood glucose levels in normal and alloxan-diabetic mice. J Ethnopharmacol. 1988;22(1):45.
6. Al-Habori M, Raman A. Antidiabetic and hypocholesterolaemic effects of fenugreek. Phytother Res. 1998;12(4):233-42.
7. Al-Yassin D, Ibrahim K. A minor haemoglobin fraction and the level of fasting blood glucose. J Faculty Med. 1981;23:373-80.
8. Amann B, Tinzmann R, Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care. 2003;26(8):2421-5.
9. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62-9.
10. Anonymous. The Wealth of India: A Dictionary of Indian Raw Materials & Industrial Products. New Delhi: Publications & Information Directorate, Council of Scientific & Industrial Research; 1985.
11. Arai K, Maguchi S, Fujii S, Ishibashi H, Oikawa K, Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem. 1987;262(35):16969-72.
12. Backonja MM, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, et al. Gabapentin for symptomatic treatment of painful neuropathy in patients with diabetes mellitus. JAMA. 1998;280(21):1831-6.
13. Basch E, Ulbricht C, Kuo G, Szapary P, Smith M. Therapeutic applications of fenugreek. Altern Med Rev. 2003;8(1):20-7.
14. Basu SK. Seed production technology for fenugreek (Trigonella foenum-graecum L.) in Canada. [Master’s Thesis]. Alberta, Canada: University of Lethbridge, Department of Biological Sciences; 2006. p. 202.
15. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1-9.
16. Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, et al. Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes. 1997;46(9):1481-90.
17. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in CC chemokine receptor 2 knockout mice. J Clin Invest. 1997;100(10):2552-61.
18. Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M, Petit P, et al. 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. Eur J Pharmacol. 2000;390(3):339-45.
19. Cameron NE, Cotter MA, Robertson S. Essential fatty acid diet supplementation: effects on peripheral nerve and skeletal muscle function. Diabetes Metab Res Rev. 1997;13(5):370-7.
20. Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol. 2002;13(1):39-53.
21. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55-63.
22. Charonis AS, Reger LA, Dege JE, et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes. 1990;39(7):807-14.
23. Cinoshita JH. A thirty-year journey in the polyol pathway. Exp Eye Res. 1990;50(5):567-73.
24. Davis SN, Granner DK. Insulin, oral agents, and the pharmacology of the endocrine pancreas. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 115-54.
25. DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM, et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron. 1992;8(5):983-93.
26. El-Kamali H, Khalid S. The most common herbal remedies in Central Sudan. Fitoterapia. 1996;67(4):301-6.
27. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde, and related aldehydes. Free Radic Biol Med. 1991;11(1):81-128.
28. Feldman EL, Stevens MJ, Russell JW, Greene DA. Diabetic neuropathy. In: Taylor S, editor. Current Review of Diabetes. Philadelphia: Current Medicine; 1999. p. 71-83.
29. Fioretto P, Mauer M, Brocco E, Velussi M, Frigato F, Muollo B, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia. 1996;39(12):1569-76.
30. Fonseca V. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr Med Res Opin. 2003;19(6):635-41.
31. Foster S, Tyler V. Tyler’s honest herbal: A sensible guide to the use of herbs and related remedies. 4th ed. Routledge; 1999.
32. Fowden L, Pratt HM, Smith A. 4-Hydroxyisoleucine from seed of Trigonella foenum-graecum. Phytochemistry. 1973;12(7):1707-11.
33. Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3711):209-10.
34. Gabr MM, Hussein A, Sherif IO, Ali SI, Mohamed HE. Renal ischemia/reperfusion injury in type II DM: Possible role of proinflammatory cytokines, apoptosis, and nitric oxide. J Physiol Pathophysiol. 2011;2(1):6-17.
35. Gao D, Li Q, Gao Z, Wang L. Antidiabetic effects of Corni Fructus extract in streptozotocin-induced diabetic rats. Yonsei Med J. 2012;53(4):691-700.
36. Giugliano D, Ceriello A, Paolisso G. Diabetes mellitus, hypertension and cardiovascular diseases: which role for oxidative stress? Metabolism. 1995;44(3):363-8.
37. Glazner GW, Ishii DN. Insulin-like growth factor gene expression in rat muscle during reinnervation. Muscle Nerve. 1995;18(12):1433-42.
38. Grimshaw CE. Aldose reductase: Model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry. 1992;31(41):10139-45.
39. Grover J, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002;81(1):81-100.
40. Hafizur RM, Babiker R, Yagi S, Chishti S, Kabir N, Choudhary MI. The antidiabetic effect of Geigeria alata is mediated by enhanced insulin secretion, modulation of β-cell function, and improvement of antioxidant activity in streptozotocin-induced diabetic rats. J Endocrinol. 2012;214(3):329-35.
41. Rasve VR, Paithankar VV, Shirsat MK, Dhobale AV. Evaluation of antiulcer activity of Aconitum heterophyllum on experimental animals. World J Pharm Pharm Sci. 2018;7(2):819-839.
42. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805-9.
43. Ighodaro OM, Adeosun AM, Akinloye OA. Alloxan-induced diabetes, a common model. Medicina (Kaunas). 2017;53(6):365-74.
44. Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of alloxan. Diabetes. 1963;12(1):115-9.
45. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-26.
46. Kaneto H, Matsuoka TA, Katakami N, et al. Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med. 2007;7(8):674-86.
47. Halliwell B. Oxidation of low-density lipoproteins: questions of initiation, propagation, and the effect of antioxidants. J Clin Nutr. 1995;61(3):670-7S.
48. Han M, Li Y, Liu M, Li Y, Cong B. Renal neutrophil gelatinase-associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat. BMC Nephrol. 2012;13:25.
49. Haskins K, Bradley B, Powers K. Oxidative stress in type 1 diabetes. Ann N Y Acad Sci. 2003;1005:43-54.
50. Hers HG. The mechanism of the transformation of glucose into fructose in the seminal vesicles. Biochim Biophys Acta. 1956;22(1):202-3.
51. Lu Q, Yin XX, Wang JY, Gao YY, Pan YM. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats. Acta Pharmacol Sin. 2007;28(6):818-28.
52. Madar Z, Stark A. New legume sources as therapeutic agents. Br J Nutr. 2007;88(S3):287-92.
53. Mauer SM, Steffes MW, Brown DM. The kidney in diabetes. Am J Med. 1981;70(3):603-12.
54. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, et al. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993;91(6):2470-8.
55. Misera HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for SOD. J Biol Chem. 1972;247(10):3170-5.
56. Mishkinsky J, Joseph B, Sulman F. Hypoglycaemic effect of trigonelline. Lancet. 1967;2(7522):1311-2.
57. Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006;15(4):442-9.
58. Rasve V, Chakraborty AK, Jain SK, Vengurlekar S. Study of phytochemical profiling and in vitro studies on antioxidant properties of ethanolic extract of Clematis triloba. Eur Chem Bull. 2022;11(12):2658-2677. doi:10.53555/ecb/2022.11.12.2162022.
59. Sefi M, Fetoui H, Soudani N, Chtourou Y, Makni M, Zeghal N. Artemisia campestris leaf extract alleviates early diabetic nephropathy in rats by inhibiting protein oxidation and nitric oxide end products. Pathol Res Pract. 2012;208(3):157-62.
60. Shah S, Bodhankar S, Bhonde R, Mohan V. Hypoglycemic activity of the combination of active ingredients isolated from Trigonella foenum-graecum in alloxan-induced diabetic mice. Pharmacologyonline. 2006;1:65-82.
61. Rasve V, Chakraborty AK, Jain SK, Vengurlekar S. Comparative evaluation of antidiabetic activity of ethanolic leaves extract of Clematis triloba and their SMEDDS formulation in streptozotocin-induced diabetic rats. J Popul Ther Clin Pharmacol. 2022;29(4):959-971. doi:10.53555/jptcp.v29i04.2360.
62. Shapiro K, Gong W. Natural products used for diabetes. J Am Pharm Assoc. 2002;42(2):217-26.
63. Sharma R. Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutr Res. 1986;6(12):1353-64.
64. Slater TF, Sawyer BC. The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. Biochem J. 1971;123(5):805-14.
65. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-86.
66. The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy in the Diabetes Control and Complications Trial. Ann Intern Med. 1995;122(8):561-8.
67. Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol. 2002;50:37-57.
68. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal, and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(Pt 1):109-16.
69. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312-6.