Volume : 12, Issue : 03, March – 2025

Title:

PHARMACOLOGICAL AND THERAPEUTIC APPLICATIONS OF COSTUS PICTUS IN TRADITIONAL MEDICINE WITH CONTEMPORARY SCIENCE IN CANCER THERAPY

Authors :

Pawar Sagar Namdeo, Ashwini, Y. R. Karthik, Padmalatha. S. Rai* and Y.L. Ramachandra

Abstract :

Medicinal plants have played an important part in medical care throughout history, including modern times. Costus pictus, also called the “insulin plant,” has a wide range of noteworthy bioactivities, including hepatoprotective, antioxidant, anti-cancer, anti-inflammatory, and anti-diabetic properties. Due to its abundance of phytochemicals, particularly flavonoids and phenolic compounds, it possesses diverse qualities. As a result, the focus of this review is on exploring C. pictus’ therapeutic potential as well as the mechanism of action underlying these encouraging results. A rich profile of bioactive substances, including glycosides, phenolic acids, steroids, flavonoids, and terpenoids, is shown by phytochemical investigations and supports the plant’s wide range of pharmacological effects. C. pictus has long been known to have anti-cancer and anti-diabetic effects. Research has shown that it can improve glycemic control by increasing muscle cell absorption of glucose and stimulating pancreatic beta cell release of insulin. The plant also demonstrates strong antioxidant and anti-inflammatory properties, scavenging free radicals to shield cells from oxidative stress and lowering levels of pro-inflammatory cytokines, including TNF-α and IL-6. When relevant, the review provides discrete relevance to the in vivo findings by addressing the phytochemicals that correspond to these effects, leading to a mechanistic explanation from Ayurvedic to modern techniques. Over time, there has been increased interest in the design of functional foods that include medicinal plant supplements. Further research is required to confirm the effects of C. pictus incorporation on foods and to conceptualise dietary intake for the prevention of various illnesses.
KEYWORDS: Traditional medicine, Costus pictus, Pharmacological activity, Bioactive compounds, anti-cancer

Cite This Article:

Please cite this article in press Pawar Sagar Namdeo et al., Pharmacological And Therapeutic Applications Of Costus Pictus In Traditional Medicine With Contemporary Science In Cancer Therapy., Indo Am. J. P. Sci, 2025; 12(05).

Number of Downloads : 10

References:

1. Sabu M: Zingiberaceae and Costaceae of South India. Indian Association of Angiosperm taxonomy, Calicut, India 2006.
2. B. Jose, L.J. Reddy, 2010. Analysis of the essential oils of the stems, leaves and rhizomes of the medicinal plant Costuspictus from Southern India. Int. J. Pharm. Pharm Sci., 2 (Suppl 2) (2010), pp. 100-101.
3. Aruna, S.R. Nandhini, V. Karthikeyan, P. Bose, K. Vijayalakshmi, S. Jegadeesh.2014. Insulin plant (Costus pictus) leaves: pharmacognostical standardization and phytochemical evaluation. Am. J. Pharm. Health Res., 2 (8) (2014), pp. 106-119.
4. M. Benny. 2004. Insulin plant in gardens. Nat. Prod. Radiance, 3 (2004), pp. 349-350
5. Hegde PK, Rao HA and Rao PN: A review on Insulin plant (C. igneus Nak). Pharmacognosy Reviews 2014; 8(15): 67-72. doi: 10.4103/0973-7847.125536.
6. M. Vessal, M. Hemmati, M. Vasei. 2003. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 135 (3) (2003), pp. 357-364, 10.1016/S1532-0456(03)00140-6
7. C.A. Rice-Evans, N.J. Miller, G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20 (7) (1996), pp. 933-956, 10.1016/0891-5849(95)02227-9.
8. C.P. Xavier, C.F. Lima, M. Rohde, C. Pereira-Wilson. 2011. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation Cancer chemotherapy and pharmacology, 68 (6) (2011), pp. 1449-1457, 10.1007/s00280-011-1641-9.
9. M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, N. Mimica-Dukić.2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives J. Funct. Foods, 40 (2018), pp. 68-75, 10.1016/j.jff.2017.10.047.
10. R. Domitrović, H. Jakovac, V.V. Marchesi, S. Vladimir-Knežević, O. Cvijanović, Z. Tadić, Z. Romić, D. Rahelić 2012. Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated balb/cn mice. Acta. Pharmacol. Sin., 33 (10) (2012), pp. 1260-1270, 10.1038/aps.2012.62.
11. I.H. Cho, J.H. Gong, M.K. Kang, E.J. Lee, J.H.Y. Park, S.J. Park, Y.H. Kang. 2014. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive mapk signaling. BMC Pulm. Med., 14 (1) (2014), pp. 1-11, 10.1186/1471-2466-14-122.
12. L.W. Soromou, N. Chen, L. Jiang, M. Huo, M. Wei, X. Chu, F.M. Millimouno, H. Feng, Y. Sidime, X. Deng, 2012. Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down- regulating nf-κb signaling pathway. Biochem. Biophy. Res. Commun. 419 (2), 256-261. doi: 10.1016/j.bbrc.2012.02.005.
13. Y. Zhang, N.P. Seeram, R. Lee, R.L. Feng, D. Heber. 2008. Isolation and identification of strawberry phenolics with antioxidants and human cancer cell antiproliferative properties. J. Agric. Food Chem., 56. (3) (2008), pp. 670-675, 10.1021/jf071989c.
14. X.Y. Xiao, M. Hao, X.Y. Yang, Q. Ba, M. Li, S.J. Ni, L.S. Wang, X. Du. 2011. Licochalcone inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett., 302 (1) (2011), pp. 69-75, 10.1016/j.canlet.2010.12.016.
15. R. Dachineni, D.R. Kumar, E. Callegari, S.S. Kesharwani, R. Sankaranarayanan, T. Seefeldt, H. Tummala, G.J. Bhat. 2017. Salicylic acid metabolites and derivatives inhibit cdk activity: novel insights into aspirin’s chemopreventive effects against colorectal cancer. Int. J. Oncol., 51 (6) (2017), pp. 1661- 1673, 10.3892/ijo.2017.4167.
16. B. Hinz, V. Kraus, A. Pahl, K. Brune. 2000. Salicylate metabolites inhibit cyclooxygenase-2-dependent prostaglandin E2 synthesis in murine macrophages. Biochem. Biophys. Res. Commun., 274 (1) (2000),pp. 197-202, 10.1006/bbrc.2000.3123.
17. V. Prejeena, S.N. Suresh, V. Varsha.2017. Phytochemical screening, antioxidant analysis and antiproliferative effect of Costuspictus d. don leaf extracts. Int. J. Recent Adv. Multidiscip. Res., 4 (2017),pp. 2373-2378.
18. P.V. Neethu, K. Suthindhiran, M.A. Jayasri. 2017. Methanolic extract of Costus pictus D. don induces cytotoxicity in liver hepatocellular carcinoma cells mediated by histone deacetylase inhibition. Pharmacogn. Mag., 13 (Suppl 3) (2017), p. S533, 10.4103/pm.pm_524_16.
19. S. Ashwini, Z. Bobby, M. Joseph, S.E. Jacob, R. Padmapriya. 2015. Insulin plant (Costus pictus) extract improves insulin sensitivity and ameliorates atherogenic dyslipidaemia in fructose induced insulin resistant rats: molecular mechanism. J. Funct. Foods, 17 (2015), pp. 749-760, 10.1016/j.jff.2015.06.024.
20. M. Benny, B. Antony, A.P.A. Aravind, N.K. Gupta, B. Joseph, I.R. Benny. 2020. Purification and characterization of anti-hyperglycemic bioactive molecule from Costus pictus D. don. Int. J. Pharm. Sci. Res., 11 (5) (2020), pp. 2075-2081.
21. P. Kalailingam, B. Kannaian, E. Tamilmani, R. Kaliaperumal. 2014. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine, 21 (10) (2014), pp. 1154-1161, 10.1016/j.phymed.2014.04.005.
22. Z.H. Ji, Z.Q. Xu, H. Zhao, X.Y. Yu. 2017. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of alzheimer’s disease. Steroids, 119 (2017), pp. 31-35, 10.1016/j.steroids.2017.01.003.
23. B.K. Cardoso, H.L.M. de Oliveira, U.Z. Melo, C.M.M. Fernandez, C.F.D.A.A. Campo, J.E. Gonçalves, A. Laverde Jr, M.B. Romagnolo, G.A. Linde, Z.C. Gazim. 2020 Antioxidant activity of α and β-amyrin isolated from Myrcianthe spungens leaves. Nat. Prod. Res., 34 (12) (2020), pp. 1777-1781, 10.1080/14786419.2018.1525715.
24. C.E. Vitor, C.P. Figueiredo, D.B. Hara, A.F. Bento, T.L. Mazzuco, J.B. Calixto. 2009. Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α‐and β‐amyrin, in a mouse model of colitis. British journal of pharmacology, 157 (6) (2009), pp. 1034-1044, 10.1111/j.1476- 5381.2009.00271.x
25. M. Majumdar, P.S. Parihar. 2012. Antibacterial, anti-oxidant and antiglycation potential of Costuspictus from southern region, India. Asian J. Plant Sci. Res., 2 (2) (2012), pp. 95-101.
26. I.S. Son, J.H. Kim, H.Y. Sohn, K.H. Son, J.S. Kim, C.S. Kwon. 2007. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats Biosci. Biotechnol. Biochem., 71 (12) (2007), pp. 3063-3071, 10.1271/bbb.70472.
27. M. Vessal, M. Hemmati, M. Vasei. 2003. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 135 (3) (2003), pp. 357-364, 10.1016/S1532-0456(03)00140-6
28. M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, N. Mimica-Dukić. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 40 (2018),pp. 68-75, 10.1016/j.jff.2017.10.047
29. R. Domitrović, H. Jakovac, V.V. Marchesi, S. Vladimir-Knežević, O. Cvijanović, Z. Tadić, Z. Romić, D. Rahelić. 2012. Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated balb/cn mice. Acta. Pharmacol. Sin., 33 (10) (2012), pp. 1260-1270, 10.1038/aps.2012.62.
30. M. Lesjak, I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, N. Mimica-Dukić. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives J. Funct. Foods, 40 (2018),pp. 68-75, 10.1016/j.jff.2017.10.047.
31. J.B. Raj, R. Kalaivani. 2016. Comparative in-vitro evaluation of anthelmintic property of leaves and rhizome of Costuspictus D. don against albendazole. Natl. J. Physiol. Pharm. Pharmacol., 6 (5) (2016), pp. 438-441, 10.5455/njppp.2016.6.0205423032016.
32. G. Sulakshana, A.S. Rani. 2016. Standardization of micropropagation form nodal segments of C. pictus an anti-diabetic plant. Int. J. Curr. Res., 8 (8) (2016), pp. 36680-36684.
33. K. Shilpa, K.N. Sangeetha, V.S. Muthusamy, S. Sujatha, B.S. Lakshmi. 2009. Probing key targets in insulin signaling and adipogenesis using a methanolic extract of Costus pictus and its bioactive molecule, methyl tetracosanoate Biotechnol. Lett., 31 (12) (2009), p. 1837, 10.1007/s10529-009-0105-3.
34. A. Aruna, R. Nandhini, V. Karthikeyan, P. Bose, K. Vijayalakshmi. Comparative anti-diabetic effect of methanolic extract of insulin plant (Costus pictus) leaves and its silver nanoparticle Indo Am. J. Pharm. Res., 4 (7) (2014), pp. 3217-3230.
35. J.R. Nakkala, E. Bhagat, K. Suchiang, S.R. Sadras Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from Costus pictus leaf extract. J. Mater. Sci. Technol., 31 (10) (2015), pp. 986-994, 10.1016/j.jmst.2015.07.002.
36. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong Green synthesis and characterization of hexagonal shaped mgo nanoparticles using insulin plant (Costus pictus D. don) leave extract and its antimicrobial as well as anticancer activity Adv. Powder Technol., 29 (7) (2018), pp. 1685-1694, 10.1016/j.apt.2018.04.003