Volume : 12, Issue : 03, March – 2025
Title:
PHYTOCHEMICAL EVALUATION OF ALPHONSEA SCLEROCARPA THAW AND ITS POTENTIAL APPLICATIONS IN CANCER THERAPY
Authors :
Prerana Pramod Dange, Ashwini , Y. R. Karthik, Padmalatha. S. Rai*, Y.L. Ramachandra
Abstract :
An abundance of phytochemicals, such as flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids, can be found in species belonging to the Annonaceae family. Because the phytochemicals found in Annonaceae members are useful in both the prevention and treatment of cancer, consuming a variety of Annonaceae species reduces the risk of developing cancer. While some of these phytochemicals have already been used in cancer treatments across the globe, other phytochemicals are also becoming more and more significant. These phytochemicals inhibit cancer by multiple methods, such as immune system modulation, apoptosis, antioxidant stress, induction of cell cycle arrest, and carcinogen inactivation. However, further investigation is warranted to evaluate the potential anti-carcinogenic effects of phytochemicals belonging to the Annonaceae family. Additional information about the anti-cancer potential of this family of phytochemicals is required, and this information could result in the development of new pharmaceuticals derived from these phytochemicals. In a similar line, additional research is needed in the future to clarify the processes underlying phytochemicals’ anti-cancer effects.
Cite This Article:
Please cite this article in press Prerana Pramod Dange et al., Phytochemical Evaluation Of Alphonsea Sclerocarpa Thaw And Its Potential Applications In Cancer Therapy., Indo Am. J. P. Sci, 2025; 12(05).
Number of Downloads : 10
References:
1. Johnson I.T. Phytochemicals and Cancer. Proc. Nutr. Soc. 2007; 66:207–215. doi: 10.1017/S0029665107005459.
2. Winston C.B.L. Phytochemicals: Health Protective Effects. Can. J. Diet. Pract. Res. 1999; 60:78.
3. Bag S., Mondal A., Majumder A., Banik A. Tea and Its Phytochemicals: Hidden Health Benefits & Modulation of Signalling Cascade by Phytochemicals. Food Chem. 2022; 371:131098. doi: 10.1016/j.foodchem.2021.131098.
4. Dillard C.J., German J.B. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food. Agric. 2000; 80:1744–1756. doi: 10.1002/1097-0010(20000915)80:12<1744: AID-JSFA725>3.0.CO;2-W.
5. Kopustinskiene D.M., Jakstas V., Savickas A., Bernatoniene J. Flavonoids as Anticancer Agents. Nutrients. 2020; 12:457. doi: 10.3390/nu12020457.
6. Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V., Kohli K. Mechanism of Action of Flavonoids as Anti-Inflammatory Agents: A Review. Inflamm. Allergy Drug Targets. 2009; 8:229–235. doi: 10.2174/187152809788681029.
7. Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K., van Leeuwen P.A. Flavonoids: A Review of Probable Mechanisms of Action and Potential Applications. Am. J. Clin. Nutr. 2001;74:418–425. doi: 10.1093/ajcn/74.4.418.
8. Ahmad A., Kaleem M., Ahmed Z., Shafiq H. Therapeutic Potential of Flavonoids and Their Mechanism of Action against Microbial and Viral Infections—A Review. Food Res. Int. 2015;77:221–235. doi: 10.1016/j.foodres.2015.06.021.
9. Oteiza P.I., Fraga C.G., Mills D.A., Taft D.H. Flavonoids and the Gastrointestinal Tract: Local and Systemic Effects. Mol. Aspects Med. 2018;61:41–49. doi: 10.1016/j.mam.2018.01.001.
10. Leitzmann C. Characteristics and Health Benefits of Phytochemicals. Complement. Med. Res. 2016; 23:69–74. doi: 10.1159/000444063.
11. Liu R.H. Health Benefits of Fruit and Vegetables Are from Additive and Synergistic Combinations of Phytochemicals. Am. J. Clin. Nutr. 2003;78:S517–S520. doi: 10.1093/ajcn/78.3.517S.
12. Oomah B. Health Benefits of Phytochemicals from Selected Canadian Crops. Trends Food Sci. Technol. 1999;10:193–198. doi: 10.1016/S0924-2244(99)00055-2.
13. Chhikara B.S., Parang K. Global Cancer Statistics 2022: The Trends Projection Analysis. Chem. Biol. Lett. 2023; 10:451.
14. Sporn M.B., Suh N. Chemoprevention of Cancer. Carcinogenesis. 2000;21:525–530. doi: 10.1093/carcin/21.3.525.
15. Tsao A.S., Kim E.S., Hong W.K. Chemoprevention of Cancer. CA Cancer J. Clin. 2004; 54:150–180. doi: 10.3322/canjclin.54.3.150.
16. Surh Y.-J. Cancer Chemoprevention with Dietary Phytochemicals. Nat. Rev. Cancer. 2003; 3:768–780. doi: 10.1038/nrc1189.
17. Ram HR, Prasad S, Dixit PK. Studies on Morphological Features and Biological Activities of the Genus Annona of Ethiopia, N. E. Africa with a Special Emphasis on Graviola: A Review, Int Journal of Science and Research. 2016;2(2):821-7.
18. Biba VS, Amily A, Sangeetha S, Remani P. Anti-cancer, Antioxidant and Anti- microbial activity of Annonaceae family. World Journal of Pharmacy & Pharma-ceutical Sciences. 2014;3(3):1595-604.
19. Mabberley, DJ, Plant Book. 3rd ed. Cambridge: Cambridge University Press. 2008;1021.
20. Nair NC, Henry AN. Flora of Tamilnadu, India. 1983, pp.03.
21. Chetty M, Sivaji K, Rao TK. Flowering plants of Chittoor District, Andhra Pradesh, India. 4. 2013;15.
22. Kumar DC, Pharmacognosy can help minimise accidental misuse of herbal medicine Curr Sci. 2007;93(10):1356-8.
23. Hadjzadeh M.A.R., Afshari J.T., Ghorbani A.P. 144 The Effects of Aqueous Extract of Garlic (Allium sativum I.) On Laryngeal Cancer Cells (Hep-2) and 1929 Cells in Vitro. Oral Oncol. Suppl. 2005;1:190. doi: 10.1016/S1744-7895(05)80507-3.
24. Chiu C.-T., Hsuan S.-W., Lin H.-H., Hsu C.-C., Chou F.-P., Chen J.-H. Hibiscus sabdariffa Leaf Polyphenolic Extract Induces Human Melanoma Cell Death, Apoptosis, and Autophagy. J. Food Sci. 2015;80:H649–H658. doi: 10.1111/1750-3841.12790.
25. Lin H.-H., Chan K.-C., Sheu J.-Y., Hsuan S.-W., Wang C.-J., Chen J.-H. Hibiscus Sabdariffa Leaf Induces Apoptosis of Human Prostate Cancer Cells in Vitro and in Vivo. Food Chem. 2012;132:880– 891. doi: 10.1016/j.foodchem.2011.11.057.
26. Tseng T.-H., Kao T.-W., Chu C.-Y., Chou F.-P., Lin W.-L., Wang C.-J. Induction of Apoptosis by Hibiscus Protocatechuic Acid in Human Leukemia Cells via Reduction of Retinoblastoma (RB) Phosphorylation and Bcl-2 Expression. Biochem. Pharmacol. 2000;60:307–315. doi: 10.1016/S0006- 2952(00)00322-1.
27. Lin H.-H., Huang H.-P., Huang C.-C., Chen J.-H., Wang C.-J. Hibiscus Polyphenol-Rich Extract Induces Apoptosis in Human Gastric Carcinoma Cells via P53 Phosphorylation and P38 MAPK/FasL Cascade Pathway. Mol. Carcinog. 2005;43:86–99. doi: 10.1002/mc.20103.
28. Purushothaman A., Nandhakumar E., Sachdanandam P. Phytochemical Analysis and Anticancer Capacity of Shemamruthaa, a Herbal Formulation against DMBA- Induced Mammary Carcinoma in Rats. Asian Pac. J. Trop. Med. 2013;6:925–933. doi: 10.1016/S1995-7645(13)60166-2.
29. Mortazavian S.M., Ghorbani A. Antiproliferative Effect of Viola Tricolor on Neuroblastoma Cells in Vitro. Aust. J. Herbalmed. 2012;24:93–96.
30. Sadeghnia H.R., Ghorbani Hesari T., Mortazavian S.M., Mousavi S.H., Tayarani-Najaran Z., GhorbaniA. Viola tricolor Induces Apoptosis in Cancer Cells and Exhibits Antiangiogenic Activity on Chicken Chorioallantoic Membrane. Biomed. Res. Int. 2014;2014:625792. doi: 10.1155/2014/625792.
31. Berrington D., Lall N. Anticancer Activity of Certain Herbs and Spices on the Cervical Epithelial Carcinoma (HeLa) Cell Line. Evid.-Based Complement. Altern. Med. 2012;2012:564927. doi: 10.1155/2012/564927.
32. Chaudhry G.-S., Jan R., Mohamad H., Tengku Muhammad T. Vitex Rotundifolia Fractions Induce Apoptosis in Human Breast Cancer Cell Line, MCF-7, via Extrinsic and Intrinsic Pathways. Res. Pharm. Sci. 2019;14:273. doi: 10.4103/1735-5362.258496.
33. Kim H., Yi J.-M., Kim N.S., Lee Y.J., Kim J., Oh D.-S., Oh S.-M., Bang O.-S., Lee J. Cytotoxic Compounds from the Fruits of Vitex Rotundifolia against Human Cancer Cell Lines. J. Korean Soc. Appl. Biol. Chem. 2012: 55:433–437. doi: 10.1007/s13765-012-2027-3.
34. Tuorkey M.J. Cancer Therapy with Phytochemicals: Present and Future Perspectives. Biomed. Environ. Sci. 2015;28:808–819. doi: 10.1016/S0895-3988(15)30111-2.
35. Choudhari A.S., Mandave P.C., Deshpande M., Ranjekar P., Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020;10:175. doi: 10.3389/fphar.2020.00175.
36. Shu L., Cheung K.-L., Khor T.O., Chen C., Kong A.-N. Phytochemicals: Cancer Chemoprevention and Suppression of Tumor Onset and Metastasis. Cancer Metastasis Rev. 2010; 29:483 502. doi: 10.1007/s10555-010-9239-y.
37. Ranjan A., Ramachandran S., Gupta N., Kaushik I., Wright S., Srivastava S., Das H., Srivastava S., Prasad S., Srivastava S.K. Role of Phytochemicals in Cancer Prevention. Int. J. Mol. Sci. 2019; 20:4981. doi: 10.3390/ijms20204981.
38. Mollakhalili Meybodi N., Mortazavian A.M., Bahadori Monfared A., Sohrabvandi S., Aghaei MeybodiF. Phytochemicals in Cancer Prevention: A Review of the Evidence. Iran. J. Cancer Prev. 2017. In press.
39. Sporn M.B., Liby K.T. Natural Products for Cancer Chemoprevention. Springer; Berlin/Heidelberg, Germany: 2020. Chemoprevention of Cancer: Past, Present, and Future; pp. 1–18. [Google Scholar]
40. Klaunig J.E., Wang Z. Oxidative stress in carcinogenesis. Curr. Opin. Toxicol. 2018; 7:116–121. doi: 10.1016/j.cotox.2017.11.014. [CrossRef] [Google Scholar]
41. Klaunig J.E. Oxidative stress and cancer. Curr. Pharm. Des. 2018; 24: 4771–4778. doi: 10.2174/1381612825666190215121712.
42. Sebastian R., Jaykar B., Gomathi V. Current status of anticancer research in the Fabaceae family. Pathways. 2020; 6:7.
43. Iqbal J., Abbasi B.A., Mahmood T., Kanwal S., Ali B., Shah S.A., Khalil A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017;7:1129 1150. doi: 10.1016/j.apjtb.2017.10.016.
44. Couvreur TLP, Forest F, Baker WJ (2011) Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreo-tropical geodispersal. J Biogeogr 38: 664–680. [Google Scholar]
45. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141: 399–436. [Google Scholar]
46. Qiu Y-L, Chase MW, Les DH, Parks CR (1993) Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann Missouri Bot Gard 80: 587–606. [Google Scholar]
47. Qiu Yin-Long, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, et al. (1999) The earliest angiosperms: evidence from mitochondria, plastid and nuclear genomes. Nature 402: 404–407. [PubMed] [Google Scholar]
48. Doyle JA, Thomas AL (1994) Cladistic analysis and pollen evolution in Annonaceae. Acta Bot Gall 141: 149–170. [Google Scholar]
49. Gentry A (1993) Diversity and floristic composition of lowland tropical forest in Africa and South America. In: Goldblatt P, ed. Biological relationships between Africa and South America. New Haven: Yale University Press. pp 500–547.
50. Burnham RJ, Johnson KR (2004) South American palaeobotany and the origins of neotropical rainforests. Phil Trans R Soc Lond B 359: 1595–1610. [PMC free article] [PubMed] [Google Scholar]