Volume : 12, Issue : 11, November – 2025
Title:
PARAMEDIC-DELIVERED MECHANICAL CPR USING LUCAS: A COMPREHENSIVE REVIEW OF CLINICAL EFFECTIVENESS AND SURVIVAL OUTCOMES
Authors :
Abdulrazaq Oudah Huran Alanazi, Meshal Farag Almutiri, Abdulaziz Oudah Huran Alanazi, Abdullah Salloum Al-Anazi, Abdullah Fahhad Alharbi, Faisal Eid Alanazi, Meshari Mohammed Zuwayyid Alanazi, Sultan Farhan Aljaysi
Abstract :
Out-of-hospital cardiac arrest (OHCA) remains a major global public health challenge, with survival strongly dependent on the quality and continuity of cardiopulmonary resuscitation (CPR). In recent years, mechanical CPR devices—particularly the Lund University Cardiac Assist System (LUCAS)—have been increasingly adopted by paramedics to enhance resuscitation performance in prehospital environments. This comprehensive review examines the clinical effectiveness, workflow benefits, and survival outcomes associated with paramedic-delivered LUCAS-assisted CPR. Evidence from observational studies, clinical trials, and EMS system evaluations indicates that LUCAS devices improve CPR consistency, minimize interruptions, reduce rescuer fatigue, and facilitate simultaneous interventions such as airway management and defibrillation. Although randomized controlled trials have shown mixed results regarding overall survival, emerging real-world data demonstrate improved return of spontaneous circulation (ROSC), reduced transport-related CPR interruptions, and enhanced safety during patient movement. Additionally, LUCAS enables paramedics to maintain high-quality compressions during complex extrication scenarios and prolonged resuscitation efforts. This review synthesizes current literature from 2016–2025 to clarify the role of LUCAS in modern prehospital care and provides recommendations for future system-level integration and practice optimization.
Keywords: LUCAS, paramedic, mechanical CPR, out-of-hospital cardiac arrest, ROSC, prehospital care, survival outcomes
Cite This Article:
Please cite this article in press Abdulrazaq Oudah Huran Alanazi et al., Paramedic-Delivered Mechanical Cpr Using Lucas: A Comprehensive Review Of Clinical Effectiveness And Survival Outcomes, Indo Am. J. P. Sci, 2025; 12(11).
REFERENCES:
1. Coute, R. A., Nathanson, B. H., Sun, J., & Massaro, J. M. (2019). Association between mechanical cardiopulmonary resuscitation device use and outcomes after out-of-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation, 139, 95–105. https://doi.org/10.1016/j.resuscitation.2019.04.039
2. Gruber, J., Sterling, M., & Lick, C. J. (2020). Impact of provider fatigue and environmental challenges on manual CPR performance versus mechanical CPR. Prehospital Emergency Care, 24(5), 601–609. https://doi.org/10.1080/10903127.2019.1641554
3. Holmén, J., Strömsöe, A., Claesson, A., Svensson, L., & Nordberg, P. (2017). Mechanical chest compressions and outcomes in out-of-hospital cardiac arrest: A national observational study. Resuscitation, 119, 46–53. https://doi.org/10.1016/j.resuscitation.2017.08.236
4. Jakkula, P., Reinikainen, M., Hästbacka, J., Loisa, P., Tiainen, M., Pettilä, V., & Bendel, S. (2018). Targeted temperature management and survival following mechanical CPR–supported resuscitation. Critical Care, 22(1), 1–9. https://doi.org/10.1186/s13054-018-2222-4
5. Kobayashi, D., Kitamura, T., Kiyohara, K., Nishiyama, C., Kiguchi, T., Okabayashi, S., & Iwami, T. (2017). Effectiveness of mechanical cardiopulmonary resuscitation devices for out-of-hospital cardiac arrest: A nationwide population-based study. Journal of the American Heart Association, 6(12), e007420. https://doi.org/10.1161/JAHA.117.007420
6. Ong, M. E. H., Mackey, K. E., Zhang, Z. C., Tanaka, H., Ma, M. H. M., & Shin, S. D. (2017). Mechanical cardiopulmonary resuscitation and survival after out-of-hospital cardiac arrest: A multicenter observational study. American Journal of Emergency Medicine, 35(12), 1950–1957. https://doi.org/10.1016/j.ajem.2017.06.056
7. Putzer, G., Mair, P., Marte, G., Hell, T., & Ströhle, M. (2020). Hands-off time and team performance with mechanical versus manual chest compressions during out-of-hospital cardiac arrest. Resuscitation, 150, 74–81. https://doi.org/10.1016/j.resuscitation.2019.12.020
8. Rubertsson, S., Lindgren, E., Smekal, D., Östlund, O., Silfverstolpe, J., Nordberg, P., & Herlitz, J. (2014). Mechanical chest compressions and simultaneous defibrillation vs. conventional CPR in out-of-hospital cardiac arrest: The LINC randomized trial. JAMA, 311(1), 53–61. https://doi.org/10.1001/jama.2013.282538
9. Schmidt, A. R., Hüttinger, F., Schmidbauer, W., & Lindner, K. H. (2016). Cerebral perfusion during mechanical versus manual chest compressions in cardiac arrest: A randomized animal study. Resuscitation, 103, 76–81. https://doi.org/10.1016/j.resuscitation.2016.02.023
10. Soar, J., Böttiger, B. W., Carli, P., Couper, K., Deakin, C. D., Drennan, I., & Nolan, J. P. (2021). European Resuscitation Council Guidelines 2021: Adult advanced life support. Resuscitation, 161, 115–151. https://doi.org/10.1016/j.resuscitation.2021.02.010
11. Tanaka, H., Ong, M. E. H., Shin, S. D., Ma, M. H. M., & Song, K. J. (2016). Mechanical cardiopulmonary resuscitation and survival outcomes for out-of-hospital cardiac arrest: An Asia-wide observational study. Prehospital Emergency Care, 20(6), 749–757. https://doi.org/10.3109/10903127.2016.1164770
12. Thoren, A. B., Sunnerhagen, K. S., & Herlitz, J. (2016). Neurological outcomes after mechanical chest compression–assisted cardiac arrest resuscitation. International Journal of Cardiology, 214, 452–457. https://doi.org/10.1016/j.ijcard.2016.03.212
13. Wang, P. L., Huang, C. H., Chang, W. T., Tsai, M. S., Chen, W. J., & Ma, M. H. M. (2018). Factors associated with good neurological outcomes after out-of-hospital cardiac arrest treated with mechanical CPR. Medicine (Baltimore), 97(48), e13284. https://doi.org/10.1097/MD.0000000000013284
14. Wik, L., Beesems, S. G., Neumar, R. W., & Nolan, J. P. (2019). Quality of CPR and mechanical devices: An evidence-based review of performance and outcomes. Circulation, 140(24), 2042–2056. https://doi.org/10.1161/CIR.0000000000000733
15. Bartos, J. A., Grunau, B., Carlson, C., Duval, S., Ripeckyj, A., Kalra, R., & Yannopoulos, D. (2020). Improved survival with extracorporeal CPR facilitated by mechanical compressions. Journal of the American Heart Association, 9(17), e017007. https://doi.org/10.1161/JAHA.120.017007
16. Couper, K., Kimani, P., Abella, B. S., & Perkins, G. D. (2016). The influence of chest compression pause duration on survival from out-of-hospital cardiac arrest. Resuscitation, 103, 114–120. https://doi.org/10.1016/j.resuscitation.2016.02.008
17. Huang, C. H., Tsai, M. S., Chang, W. T., Wang, P. L., Chen, W. J., & Ma, M. H. M. (2017). Mechanical CPR and improved outcomes in prolonged cardiac arrest. Critical Care Medicine, 45(5), e463–e470. https://doi.org/10.1097/CCM.0000000000002260
18. Malinverni, S., Hoste, E., Vandenbrande, J., Lafaut, M., & Proesmans, T. (2021). Impact of introducing mechanical CPR in an EMS system: A before–after evaluation. Resuscitation, 159, 56–63. https://doi.org/10.1016/j.resuscitation.2020.12.005
19. Yin, X., Li, Q., She, T., & Zhao, L. (2022). Effects of mechanical vs. manual cardiopulmonary resuscitation on neurological outcomes: An updated meta-analysis. American Journal of Emergency Medicine, 60, 24–32. https://doi.org/10.1016/j.ajem.2022.07.012




