Volume : 12, Issue : 10, October – 2025

Title:

PROCESS ANALYTICAL TECHNOLOGY

Authors :

E Naga Deepthi and Madduri Vamshi Yadav

Abstract :

In an ideally regulated manufacturing industry, when a process is launched, its progress should be easily monitored and controlled until that process is completed. This means that at any given time, the condition and the quality of the product with respect to yield are transparent and known. This knowledge is lacking in current pharmaceutical manufacturing due to a lack of information feedback during the manufacturing process. This knowledge gap can be addressed by PAT solutions that report the condition of a product in real-time and facilitate the introduction of a feedback loop to control a process based on the reported parameters. Such an approach allows to test quality of the product at different manufacturing stages to ensure quality by design (QbD) from raw materials to intermediate, and to the final drug product.

Cite This Article:

Please cite this article in press E Naga Deepthi et al., Process Analytical Technology., Indo Am. J. P. Sci, 2025; 12(10).

REFERENCES:

1. Administration F and D PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance (2004)〈http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf〉Google Scholar
2. M. Alcalà, M. Blanco, J.C. Menezes, et al. Near-infrared spectroscopy in laboratory and process analysis
3. Encycl. Anal. Chem. (2012), 10.1002/9780470027318.a9361 Published online December 17 publisher Google
4. Systems PA. Application Note: % Benzene in Gasoline Application Note: % Benzene in Gasoline. 〈https://guided-wave.com/benzene-in-gasoline/〉.Google Scholar
5. Guided Wave. NIR-O ™ Process Analyzer – Spectrometer NIR-O ™ Process Analyzer – Spectrometer. 〈https://guided-wave.com/nir-o-full-spectrum-analyzer/〉. Google Scholar
6. M.T. Munir, D.I. Wilson, N. Depree, I. Boiarkina, A. Prince-Pike, B.R. Young Real-time product release and process control challenges in the dairy milk powder industry Curr. Opin. Food Sci., 17 (2017), pp. 25-29 Particle View Google
7. N. O’Shea, T.F. O’Callaghan, J.T. Tobin The application of process analytical technologies (PAT) to the dairy industry for real time product characterization-process viscometry Innov. Food Sci. Emerg. Technol., 55 (2019), pp. 48-56. View PDFarticle View Google
8. Guided Wave. The Role of NIR Process Analysers in Refineries to Process Crude Oil into Useable Petrochemical Products. Published 2021. 〈https://guided-wave.com/analyzers-for-petrochemical-refineries/〉Google Scholar
9. A.S. Rathore, D. Kumar, N. Kateja Role of raw materials in biopharmaceutical manufacturing: risk analysis and fingerprinting Curr. Opin. Biotechnology., 53 (2018), pp. 99-105, 10.1016/j.copbio.2017.12.022 View PDFarticle View Google
10. C. Mei, S. Deshmukh, J. Cronin, S. Cong, D. Chapman, N. Lazaris, L. Sampaleanu, U. Schacht, K. Drolet-Vives, M. Ore, S. Morin, B. Carpick, M. Balmer, M. Kirkitadze Aluminium phosphate vaccine adjuvant: analysis of composition and size using off-line and in-line tools Compute. Struct. Biotechnology. J., 17 (2019), pp. 1184-1194. View PDFarticle View Google
11. G. Gerzon, R. Villegas, J. Duprez, S. Dhaliwal, Y. Sheng, M. Kirkitadze Near-infrared spectroscopy for monitoring Maillard reaction and critical process parameters of a C. tetani bioprocess BioPharma Asia, 10 (4) (2021), pp. 4-14. 〈https://biopharma-asia.com/magazine-articles/near-infrared-spectroscopy-for-monitoring-maillard-reaction-and-critical-process-parameters-of-a-c-tetani-bioprocess/〉Google Scholar
12. F. Rudinger, M. Sandor, D. Solle, T. Scheper, R. Bienert NIR spectroscopy for process monitoring and control in mammalian cell cultivation Bioprocess Int, 11 (2013), pp. 40-46. 〈https://bioprocessintl.com/2013/nir-spectroscopy-for-process-monitoring-and-control-in-mammalian-cell-cultivation-346314/〉Google Scholar
13. M. Haer, K. Strahlendorf, J. Payne, R. Jung, E. Xiao, C. Mirabel, N. Rahman, P. Kowal, G. Gemmiti, J.T. Cronin, T. Gable, K. Park-Lee, K. Drolet-Vives, M. Balmer, M. Kirkitadze. PAT solutions to monitor adsorption of Tetanus Toxoid with aluminium adjuvants J. Pharm. Biomed. Anal., 198 (2021), Article 114013 View PDFarticle View Google
14. J. Payne, J. Cronin, M. Haer, J. Krouse, W. Prosperi, K. Drolet Vives, M. Lieve, M. Soika, M. Balmer, M. Kirkitadze In-line monitoring of surfactant clearance in viral vaccine downstream processing Compute. Struct. Biotechnology. J., 19 (2021), pp. 1829-1837, 10.1016/j.csbj.2021.03.030 View PDFarticle View Google
15. J. Duprez, K. Kalbfleisch, S. Deshmukh, J. Payne, M. Haer, W. Williams, I. Durowoju, M. Kirkitadze Structure and compositional analysis of aluminium oxyhydroxide adsorbed pertussis vaccine Compute. Struct. Biotechnology. J., 19 (2021), pp. 439-447, 10.1016/j.csbj.2020.12.023. View PDFarticle View Google
16. V. Vetter, G. Denizer, L.R. Friedland, J. Krishnan, M. Shapiro Understanding modern-day vaccines: what you need to know Ann. Med., 50 (2) (2018), pp. 110-120, 10.1080/07853890.2017.1407035. Scopus Google
17. Wyatt Technology. Multi-Angle Light Scattering (MALS) Detectors. 〈https://www.wyatt.com/products/instruments/multi-angle-light-scattering-detectors-sec-mals.html〉. Google Scholar
18. G. Reich Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications Adv. Drug Deliv. Rev., 57 (8) (2005), pp. 1109-1143, 10.1016/j.addr.2005.01.020 View PDFarticle View Google
19. A.E. Cervera, N. Petersen, A.E. Lantz, A. Larsen, K.V. Greaney Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation Biotechnology. Prog., 25 (6) (2009), pp. 1561-1581, 10.1002/btpr.280 Scopus Google
20. J.P. Cozen Multivariate Calibration: A Practical Guide for the Method Development in the Analytical Chemistry, Bruker opt GmbH, Ettlinger, Ger. (2003) Google Scholar
21. M. Kornecki, J. Strube Process analytical technology for advanced process control in biologics manufacturing with the aid of macroscopic kinetic modelling Bioengineering (Basel, Switzerland), 5 (1) (2018), p. 25 CrossrefView in ScopusGoogle Scholar
22. J.M. Olinger, P.R. Griffiths Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes Appl. Spectrosc., 47 (6) (1993), pp. 687-694, 10.1366/0003702934066965 View in ScopusGoogle Scholar
23. J.M. Olinger, P.R. Griffiths Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part II: durum wheat Appl. Spectrosc., 47 (6) (1993), pp. 695-701 〈http://as.osa.org/abstract.cfm?URI=as-47-6-695〉CrossrefView in ScopusGoogle Scholar
24. Y.K. Lin, H.Y. Leong, T.C. Ling, D.-Q. Lin, S.-J. Yao Raman spectroscopy as process analytical tool in downstream processing of biotechnology Chin. J. Chem. Eng., 30 (2021), pp. 204-211 View PDFView articleView in ScopusGoogle Scholar
25. M. Goldfeld, J. Christensen, D. Pollard, et al. Advanced near-infrared monitor for stable real-time measurement and control of Pichia pastoris bioprocesses Biotechnol. Prog. (2014), p. 30 Google Scholar
26. M. Clavaud, Y. Roggo, R. Von Daeniken, A. Liebler, J.-O. Schwabe Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables Talanta, 111 (2013), pp. 28-38, 10.1016/j.talanta.2013.03.044. View PDFView articleView in ScopusGoogle Scholar
27. S.A. Arnold, J. Crowley, N. Woods, L.M. Harvey, B. McNeil In-situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation Biotechnol. Bioeng., 84 (1) (2003), pp. 13-19, 10.1002/bit.10738 View in ScopusGoogle Scholar
28. M. Navrátil, A. Norberg, L. Lembrén, C.-F. Mandenius On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation J. Biotechnol., 115 (1) (2005), pp. 67-79, 10.1016/j.jbiotec.2004.07.013 View PDFView articleView in ScopusGoogle Scholar
29. B. Kozma, E. Hirsch, S. Gergely, L. Párta, H. Pataki, A. Salgó On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: comparative scalability test with a shake flask model system J. Pharm. Biomed. Anal., 145 (2017), pp. 346-355 View PDFView articleView in ScopusGoogle Scholar.