Volume : 12, Issue : 10, October – 2025

Title:

STEM CELL THERAPY – ON VARIOUS HUMAN DISEASES

Authors :

Shubham S. Kale*, Ankita Sarnaik, Dr. Swati P Deshmukh

Abstract :

Stem cell therapy has become a big change in the field of regenerative medicine, providing new ways to treat diseases and injuries that were once hard to manage. A lot of progress has been made in learning about the different kinds of stem cells, like embryonic, adult, and induced pluripotent cells, including how they work and what they can do. In real-world applications, doctors have seen positive outcomes for many health issues, such as blood disorders, problems with the nervous system, heart damage, and joint problems. New The term “stem cell” was first used by the famous German biologist Ernst Haeckel in 1868 to describe how a fertilized egg can develop into all the different cells in an organism. The beginnings of stem cell therapy started in 1888 when two German zoologists, Theodor Heinrich Boveri and Valentin Haecker, first defined what a stem cell was. Cardiovascular diseases are a major health issue for dogs and are responsible for about 8% of deaths in pets. Heart failure is the most common cause of death globally, and the treatments available today can only slow down how the disease gets worse. Studies done in labs and recent clinical trials show that using cell-based therapies can help improve heart function, and this has sparked a lot of hope in the field of heart regeneration. Stem cells have two defining features: self-renewal, which is the capacity to divide and generate identical copies of themselves, and differentiation, the ability to transform into specialized cell types. These properties make stem cells promising for the repair and regeneration of damaged tissues and organs.
Keywords: Steam cell, History, Classification, Diagram,Steam cell tissue Bank, Application

Cite This Article:

Please cite this article in press Shubham S. Kale et al., Stem Cell Therapy – On Various Human Diseases, Indo Am. J. P. Sci, 2025; 12(10).

REFERENCES:

1. (Lapteva, L.; Vatsan, R.; Purohit-Sheth, T. Regenerative medicine therapies for rare diseases. Transl. Sci. Rare Dis. 2018, 3, 121–132. [Google Scholar] [CrossRef] [PubMed])
2. Michalopoulos, G. K., and Bhushan, B. (2021). Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55. doi: 10.1038/s41575-020-0342-4 )
3. Wang J, Deng G, Wang S, Li S, Song P, Lin K, Xu X and He Z (2024) Enhancing regenerative medicine: the crucial role of stem cell therapy. Front. Neurosci. 18:1269577. doi: 10.3389/fnins.2024.1269577
4. Mousaei Ghasroldasht, M.; Seok, J.; Park, H.-S.; Liakath Ali, F.B.; Al-Hendy, A. Stem Cell Therapy: From Idea to Clinical Practice. Int. J. Mol. Sci. 2022, 23, 2850. https:// doi.org/10. 3390/ijms23052850)
5. Donnelly, H.; Salmeron-Sanchez, M.; Dalby, M.J. Designing stem cell niches for differentiation and self-renewal. J. R. Soc. Interface 2018, 15, 20180388. [Google Scholar] [CrossRef])
6. Li J, Wu Y, Yao X, et al. Preclinical research of stem cells: challenges and progress. Stem Cell Rev Rep 2023;19:1676–1690.
7. Padda J, Khalid K, Zubair U, et al. (August 17, 2021) Stem Cell Therapy and Its Significance in Pain Management. Cureus 13(8): e17258. DOI 10.7759/cureus.17258
8. Choudhery, M.S., Umezawa, A. Stem cells as biological drugs for incurable diseases. Stem Cell Res Ther 16, 482 (2025). https://doi.org/10.1186/s13287-025-04632-8
9. Nadig, Roopa R. Stem cell therapy – Hype or hope? A review. Journal of Conservative Dentistry 12(4):p 131-138, Oct–Dec 2009. | DOI: 10.4103/0972-0707.58329
10. Mousaei Ghasroldasht, M.; Seok, J.; Park, H.-S.; Liakath Ali, F.B.; Al-Hendy, A. Stem Cell Therapy: From Idea to Clinical Practice. Int. J. Mol. Sci. 2022, 23, 2850. https://doi.org/10.3390/ijms23052850
11. Lai, S., Guo, Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal stem cells as a promising treatment option. Stem Cell Res Ther 15, 312 (2024).
12. Malik, V., and Wang, J. (2022). Pursuing totipotency: authentic totipotent stem cells in culture. Trends Genet. 38, 632–636. doi: 10.1016/j.tig.2022.03.012
13. Dr. Brenda Russell, Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, Russell@uic.edu, Ph: 312-413-0407, Fax: 312-996-5312.
14. Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Sig Transduct Target Ther 9, 112 (2024). https://doi.org/10.1038/s41392-024-01809-0
15. Chandy, M., Obal, D., and Wu, J. C. (2022). Elucidating effects of environmental exposure using human-induced pluripotent stem cell disease modeling. EMBO Mol. Med. 14:e13260. doi: 10.15252/emmm.202013260
16. Moradi, S., Mahdizadeh, H., Šarić, T. et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 10, 341 (2019). https://doi.org/10.1186/s13287-019-1455-y
17. Good RA, Meuwissen HJ, Hong R, Gatti RA. Bone marrow transplantation: correction of immune deficit in lymphopenic immunologic deficiency and correction of an immunologically induced pancytopenia. Trans Assoc AM Physicians. 1969; 82:278–85. [PubMed: 4393025]
18. Poliwoda S, Noor N, Downs E, Schaaf A, Cantwell A, Ganti L, Kaye AD, Mosel LI, Carroll CB, Viswanath O, Urits I. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia). 2022 Aug 25;14(3):37498. doi: 10.52965/001c.37498. PMID: 36034728; PMCID: PMC9404248.
19. Müller, A.M.; Huppertz, S.; Henschler, R. Hematopoietic stem cells in regenerative medicine: Astray or on the path? Transfus. Med. Hemother. 2016, 43, 247–254.
20. Mosaad, Y.M. Hematopoietic stem cells: An overview. Transfus. Apher. Sci. 2014, 51, 68–82. [Google Scholar] [CrossRef]

21. Hoang, D.M., Pham, P.T., Bach, T.Q. et al. Stem cell-based therapy for human diseases. Sig Transduct Target Ther 7, 272 (2022). https://doi.org/10.1038/s41392-022-011344
22. Srijaya, T. C., Ramasamy, T. S. & Kasim, N. H. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J. Transl. Med. 12, 243 (2014).
23. Vincent F. M. Segers and Richard T. Lee. It was published in volume 451, issue 7181, on pages 937–942.
24. Lopez, A. D. et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006)
25. Diwan, A. & Dorn, G. W. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22, 56–64 (2007)
26. Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules. 2025 Mar 4;15(3):371. doi: 10.3390/biom15030371. PMID: 40149907; PMCID: PMC11940628
27. Fatemeh Khojasteh Pour, Mahrokh Abouali Gale Dari, Mohammad Ramazii, Mona Keivan, Maryam Farzaneh, Mesenchymal Stem Cells-Conditioned Medium; An Effective Cell-Free Therapeutic Option for in vitro Maturation of Oocytes , Current Stem Cell Research & Therapy, 10.2174/1574888X18666221219163753, 19, 5, (636-643), (2024)
28. Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. et al. Stem cells: past, present, and future. Stem Cell Res Ther 10, 68 (2019). https://doi.org/10.1186/s13287-019-1165-5
29. Cell. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 186(7), 1-17. Retrieved from https://www.cell.com/cell/fulltext/S0092-8674(24)00111-9
30. Dr. Amit Kumar Dutta, Dr. Ch. Srinivasulu, Dr. M Sunanda, Dr. P. Vara Lakshmi, Dr. N. Baratha Jyothi, (2025) Stem Cell Therapy in Regenerative Medicine Current Progress, Challenges, and Future Prospects. Journal of Neonatal Surgery, 14 (6), 368-376.
31. PubMed Central. (2023). Ethical and safety issues of stem cell-based therapy. Frontiers in Pharmacology, 8, 176. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765738/
32. Ramalho-Santos, M. & Willenbring, H. On the origin of the term “stem cell”. Cell Stem Cell 1, 35–38 (2007).
33. Konstantinov, I. E. In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect. Biol. Med. 43, 269–276 (2000).
34. Droscher, A. Images of cell trees, cell lines, and cell fates: the legacy of Ernst Haeckel and August Weismann in stem cell research. Hist. Philos. Life Sci. 36, 157–186 (2014).
35. Jansen, J. The first successful allogeneic bone-marrow transplant: Georges Mathe. Transfus. Med. Rev. 19, 246–248 (2005).
36. Blume, K. G. & Weissman, I. L. E. Donnall Thomas (1920-2012). Proc. Natl Acad. Sci. USA 109, 20777–20778 (2012).
37. Cheng, M. Hartmann Stahelin (1925-2011) and the contested history of cyclosporin A. Clin. Transpl. 27, 326–329 (2013).
38. Thomas, E. D. et al. Aplastic anaemia treated by marrow transplantation. Lancet 1, 284–289 (1972)
39. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019)
40. Roda, G. et al. Crohn’s disease. Nat. Rev. Dis. Prim. 6, 22 (2020)
41. Gratwohl, A. et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transpl. 35, 869–879 (2005).
42. Wang, R. et al. Stem cell therapy for Crohn’s disease: systematic review and meta-analysis of preclinical and clinical studies. Stem Cell Res Ther. 12, 463 (2021).
43. Liu, Y., Dong, Y., Wu, X., Xu, X. & Niu, J. The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res. Ther. 13, 204 (2022)
44. Liang, W. et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol. Biol. Lett. 26, 3 (2021)
45. A. Andrzejewska, S. Dabrowska, B. Lukomska, M. Janowski, Mesenchymal Stem Cells for Neurological Disorders. Adv. Sci. 2021, 8, 2002944. https://doi.org/10.1002/advs.202002944
46. Agnieszka Mikłosz, Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland.
47. ]Montanucci P, Pescara T, Greco A, Basta G and Calafiore R (2023), Human induced pluripotent stem cells (hiPSC), enveloped in elastin-like recombinamers for cell therapy of type 1 diabetes mellitus (T1D): preliminary data. Front. Bioeng. Biotechnol. 11:1046206. doi: 10.3389/fbioe.2023.1046206
48. Agrawal, A., Narayan, G., Gogoi, R., and Thummer, R. P. (2021). Recent advances in the generation of beta-cells from induced pluripotent stem cells as a potential cure for diabetes mellitus. Adv. Exp. Med. Biol. 1347, 1–27. doi:10.1007/5584_2021_653
49. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4), 663–676. doi:10.1016/j.cell.2006.07.024
50. Kudva YC, Ohmine S, Greder LV, et al. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 2012;1:451–461
51. Zhao T, Zhang ZN, Westenskow PD, et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 2015;17:353–359
52. White, S. L., Hart, K., and Kohn, D. B. (2023). Diverse approaches to gene therapy of sickle cell disease. Annu. Rev. Med. 74, 473–487. doi: 10.1146/annurev-med-042921-021707
53. Nourian Dehkordi, A., Mirahmadi Babaheydari, F., Chehelgerdi, M., and Raeisi, D. S. (2019). Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 10:111. doi: 10.1186/s13287-019-1212-2.