Volume : 12, Issue : 09, September – 2025
Title:
PEPTIDE INJECTIONS IN CLINICAL PRACTICE: A REVIEW ON ABALOPARATIDE
Authors :
Bhavya Tejaswi.G*, Dr. P Veera Lakshmi, Jithendra Laxman sai. S,Aruna Kumari.K, Pranav lendey
Abstract :
Peptide-based therapeutics have revolutionized modern medicine due to their high selectivity, low toxicity, and therapeutic versatility. Since the discovery of insulin in 1922, peptides have evolved into a critical class of pharmaceutical agents used in oncology, endocrinology, infectious diseases, and metabolic disorders. Their role is particularly prominent in the management of chronic and degenerative conditions, where conventional therapies often fall short. However, due to poor oral bioavailability and susceptibility to enzymatic degradation, peptides are predominantly administered via injection, necessitating innovative delivery strategies. This review provides a comprehensive overview of peptide-based injectable therapeutics, focusing on their classification, synthesis, characterization, delivery technologies, regulatory considerations, and future directions. Emphasis is placed on abaloparatide, a synthetic analog of parathyroid hormone-related protein (PTHrP), which has shown significant clinical promise in the treatment of postmenopausal osteoporosis. Abaloparatide selectively binds to the RG conformation of the PTH1 receptor, leading to transient receptor activation that promotes osteoblast activity while minimizing bone resorption. Comparative analysis with teriparatide underscores abaloparatide’s superior selectivity and reduced adverse effect profile. Current injectable formulations, including solutions, microspheres, and implants, are designed to improve bioavailability and patient compliance. Clinical data affirm abaloparatide’s efficacy in increasing bone mineral density and reducing fracture risk. Advances in depot-based systems and nanocarrier platforms are poised to further transform peptide delivery.
With continued innovation in formulation and delivery, peptides like abaloparatide exemplify the growing potential of this drug class in modern therapeutics.
Keywords: Peptide therapeutics, Abaloparatide, Injectable peptides, Osteoporosis, Drug delivery systems
Cite This Article:
Please cite this article in press Bhavya Tejaswi.G et al., Peptide Injections In Clinical Practice: A Review On Abaloparatide, Indo Am. J. P. Sci, 2025; 12(09).
REFERENCES:
1. de Leiva-Hidalgo, A. & de Leiva-Pérez, A. Experiences of First Insulin-Treated Patients (1922–1923). Am. J. Ther. 27, e13–e23 (2020). Article PubMed Google Scholar
2. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).Article CAS PubMed Google Scholar
3. Davidson, M. B., Bate, G. & Kirkpatrick, P. Exenatide. Nat. Rev. Drug Discov. 4, 713–714 (2005). de Oliveira, A. N., Soares, A. M. & Da Silva, S.
4. L. Why to Study Peptides from Venomous and Poisonous Animals? Int. J. Pept. Res. Ther. 29, 76 (2023).
5. Davidson, M. B., Bate, G. & Kirkpatrick, P. Exenatide. Nat. Rev. Drug Discov. 4, 713–714 (2005).
6. McGivern, J. G. Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr. Dis. Treat. 3, 69–85 (2007).
7. Gong, J. et al. Tirofiban for acute ischemic stroke: systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 76, 475–481 (2020).
8. Tonin, G. & Klen, J. Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. Int. J. Mol. Sci. 24, 5446 (2023).
9. Lau, J. L. & Dunn, M. K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Biorg. Med. Chem. 26, 2700–2707 (2018).
10. Vigneaud, V. D. et al. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc. 75, 4879–4880 (1953).
11. Du Vigneaud, V., Gish, D. T., Katsoyannis, P. G. & Hess, G. P. Synthesis of the Pressor-Antidiuretic Hormone, Arginine-Vasopressin. J. Am. Chem. Soc. 80, 3355–3358 (1958).
12. Henninot, A., Collins, J. C. & Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 61, 1382–1414 (2018).
13. Bolla, M. et al. Improved Survival in Patients with Locally Advanced Prostate Cancer Treated with Radiotherapy and Goserelin. N. Engl. J. Med. 337, 295–300 (1997).
14. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drugdiscovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
15. Furusawa, S. et al. Glycaemic control efficacy of switching from dipeptidyl peptidase-4 inhibitors to oral semaglutide in subjects with type 2 diabetes: A multicentre, prospective, randomized, open-label, parallel-group comparison study (SWITCH-SEMA 2 study). Diabetes Obes. Metab. 26, 961–970 (2024).
16. France, N. L. & Syed, Y. Y. Tirzepatide: A Review in Type 2 Diabetes. Drugs 84, 227–238 (2024).
17. Kaur, M. & Misra, S. A review of an investigational drug retatrutide, a novel triple agonist agent for the treatment of obesity. Eur. J. Clin. Pharmacol. 80, 669–676 (2024).
18. Vahidfar, N. et al. Diagnostic Value of Radiolabelled Somatostatin Analogues for Neuroendocrine Tumour Diagnosis: The Benefits and Drawbacks of [(64)Cu]Cu-DOTA- TOC. Cancers (Basel) 14, 1914 (2022).
19. Gontsarik, M., Yaghmur, A. & Salentinig, S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. J. Colloid Interface Sci. 583, 672–682 (2021).
20. Liu, M., Fang, X., Yang, Y. & Wang, C. Peptide- Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng. Biotechnol. 9, 701504 (2021).
21. McNamara, K. & Tofail, S. A. M. Nanoparticles in biomedical applications. Adv. Phys.: X. 2, 54–88 (2017).
22. Han, X., Xu, K., Taratula, O. & Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale 11, 799–819 (2019).
23. Deng, X. et al. Discovery of novel cell- penetrating and tumor-targeting peptide-drug conjugate (PDC) for programmable delivery of paclitaxel and cancer treatment. Eur. J. Med. Chem. 213, 113050 (2021).
24. Vyas, D., Patel, M. & Wairkar, S. Strategies for active tumor targeting-an update. Eur. J. Pharmacol. 915, 174512 (2022).
25. Cooper, B. M. et al. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480– 1494 (2021).
26. Hou, Y. et al. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm. Sin. B. 13, 3321– 3338 (2023).
27. Xiao, W., Jiang, W., Chen, Z. et al. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Sig Transduct Target Ther 10, 74 (2025). https://doi.org/10.1038/s41392-024-02107-5
28. Thompson JC, Wanderman N, Anderson PA, Freedman BA. Abaloparatide and the Spine: A Narrative Review. Clin Interv Aging. 2020 Jun 29;15:1023-1033. doi: 10.2147/CIA.S227611. PMID: 32636617; PMCID: PMC7334019.
29. Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
30. Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Current applications and future directions. Chemical Reviews, 118(17), 9287–9348. https://doi.org/10.1021/acs.chemrev.7b00726
31. Lee, A. C.-L., Harris, J. L., Khanna, K. K., & Hong, J.-H. (2019). A Comprehensive Review on Current Advances in Peptide Drug Development and Design. International Journal of Molecular Sciences,20(10), 2383.https://doi.org/10.3390/ijms20102383
32. Sharma, D., Maheshwari, R., Tekade, M., & Tekade, R. K. (2023). Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances. Pharmaceutics, 15(4),397.https://doi.org/10.3390/pharmaceutics15040397
33. Prausnitz, M. R., & Langer, R. (2008). Transdermal drug delivery. Nature Biotechnology, 26, 1261–1268. https://doi.org/10.1038/nbt.1504
34. Djupesland, P. G., & Skretting, A. (2012). Nasal delivery of peptides: Challenges and developments. Drug Delivery and Translational Research, 2(4), 256–265. https://doi.org/10.1007/s13346-012-0072-0
35. Morishita, M., & Peppas, N. A. (2006). Is the oral route possible for peptide and protein drugdelivery? Drug Discovery Today, 11(19–20), 905–910. https://doi.org/10.1016/j.drudis.2006.08.005
36. Chen G, Kang W, Li W, Chen S, Gao Y. Oral delivery of protein and peptide drugs: from non- specific formulation approaches to intestinal cell targeting strategies. Pharmaceutics. 2023;17(4):397.doi:10.3390/pharmaceutics17040397.
37. Hamman JH, Enslin GM, Kotzé AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs. 2005;19(3):165-177. doi:10.2165/00063030-200519030-00003.
38. AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res. 2021;82(5):598-609. doi:10.1002/ddr.21783.
39. Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81(2):442–448.
40. Lunenfeld B. Historical perspectives in gonadotrophin therapy. Reprod Biomed Online. 2004;9(3):282–289.
41. Coy DH. Somatostatin analogs: current status and potential future developments.Endocr Rev. 1985;6(4):449–469.
42. Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide- 1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43(9):1664–1669.
43. Azria M. Long-acting delivery systems for peptide hormones. Drugs. 1989;38(4):681– 695.
44. Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. Curr Opin Drug Discov Devel. 1999;2(2):251–260.
45. Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta. 1999;1462(1–2):29–54.
46. Miljanich GP. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr Opin Investig Drugs. 2004;5(1):76– 81.
47. Unger RH. Glucagon physiology and pathophysiology. Diabetes. 1971;20(2):83–85.
48. Wenger RM. Peptide therapeutics—how to convert a peptide into a drug. Trends Pharmacol Sci. 1981;2:372–375.
49. Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA. 1988;85(15):5409–5413.
50. Steiner DF. Evidence for a precursor in the biosynthesis of insulin. Trans NY Acad Sci.1967;30(5):608–616.
51. Harrison S, Geppetti P. Substance P. Trends Neurosci. 1995;18(1):46–48.
52. Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol. 2002;14(1):96–
53. FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins.Curr Pharm Des. 2004;10(7):845–859.
54. Garaci E. Antiviral and antitumor activity of lactoferrin. J Biol Regul Homeost Agents. 2007;21(2):93–103.
55. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3(3):153– 165.1 Soman NR, Baldwin SL, Hu G, et al. Molecularly targeted nanocarriers deliver the cytotoxic peptide melittin specifically to tumor cells in mice. Cancer Res. 2009;69(24):1212–1215.
56. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Mechanistic understanding of the efficacy of abaloparatide for the treatment of postmenopausal osteoporosis. Bone. 2016;87:50–56.
57. Lalezari JP, Henry K, O’Hearn M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med. 2003;348(22):2175–2185.
58. Abraham WT, Adamson PB. Cardiac resynchronization therapy: present and future. Curr Cardiol Rep. 2000;2(6):488– 493.
59. Meister A, Anderson ME. Glutathione.Annu Rev Biochem. 1983;52:711–760.
60. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Drug Deliv. 2008;15(3):109–120.
61. LeRoith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22(1):53–74.
62. Olivera BM, Teichert RW. Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Cell Mol Life Sci. 2007;64(17):2210–2230.
63. Lodish H, Berk A, Zipursky SL, et al. Protein sorting and secretion. In: Molecular Cell Biology. 4th ed. New York: W.H. Freeman; 2000.
64. Süssmuth RD, Mainz A. Nonribosomal peptide synthesis—principles and prospects. Angew Chem Int Ed Engl. 2017;56(14):3770–3821.
65. Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for
a. medical and biological applications. Adv Drug Deliv Rev. 2009;61(11):953–964.
66. Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality. Int Dairy J. 2006;16(9):945–960.
67. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. Biochim Biophys Acta. 1992;1121(1):130–136.
68. Materials: Adapted from: Fosgerau & Hoffmann (2015), Goyal et al. (2021), and relevant FDA formulation guidelines.
69. Merrifield, R. B. (1963). Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. JACS, 85(14), 2149–2154.
70. Behrendt, R., White, P., & Offer, J. (2016). Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science, 22(1), 4–27. https://doi.org/10.1002/psc.2836
71. Bray, B. L. (2003). Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Reviews Drug Discovery, 2(7), 587–593. https://doi.org/10.1038/nrd1133
72. Bodanszky, M. (1993). Peptide Chemistry: A Practical Textbook. Springer.
73. Sewald, N., & Jakubke, H.-D. (2009). Peptides: Chemistry and Biology. Wiley-VCH.
74. Pedersen, S. L., Tofteng, A. P., Malik, L., & Jensen, K. J. (2012). Microwave heating in solid- phase peptide synthesis. Chemical Society Reviews, 41(5), 1826–1844.https://doi.org/10.1039/C1CS15103H
75. Collins, J. M., & Leadbeater, N. E. (2007). Microwave energy: a versatile tool for the biosciences. Organic & Biomolecular Chemistry, 5(8), 1141–1150.
76. Barlos, K. et al. (1991). Microwave-assisted synthesis of protected peptides. Journal of Organic Chemistry, 56(10), 3475–3478.
77. Yamaguchi, S. (2011). Enzymatic peptide synthesis: Catalysis by proteases and esterases. Journal of Bioscience and Bioengineering, 111(5), 501–508.
78. Jakubke, H. D. (1987). Enzymatic peptide synthesis. Angewandte Chemie International Edition, 26(10), 911–925.
79. Sahdev, S., et al. (2008). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 307(1), 249–264.
80. Agouridas, V., et al. (2019). Native chemical ligation and extended methods: Mechanisms, catalysis, scope, and limitations. Chemical Reviews, 119(12), 7328–7443.
81. Muir, T. W. (2003). Semisynthesis of proteins by expressed protein ligation. Annual Review of Biochemistry, 72(1), 249–289.
82. Albericio, F., & Kruger, H. G. (2012). Therapeutic peptides. Future Medicinal Chemistry, 4(12), 1527–1531.
83. Patil, N. A., et al. (2015). Fragment condensation approaches for peptide synthesis. International Journal of Peptide Research and Therapeutics, 21(1), 1–9.
84. Geoghegan, K. F., & Stroh, J. G. (1992). Site- directed conjugation of nonpeptide groups to peptides and proteins via oxidized methionine residues. Bioconjugate Chemistry, 3(2), 138–146.
85. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov.2020;19(4):277–289.
86. Banga AK. Therapeutic Peptides and Proteins: Formulation, Processing, and Delivery Systems. CRC Press; 2015.
87. Ahlawat S, Narayan R, Ahlawat R, Gupta A. Recent advancements in peptide drug delivery. Ther Deliv. 2018;9(6):429–444.
88. Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: Current status and future directions. Drug Discovery Today, 20(1), 122–128. https://doi.org/10.1016/j.drudis.2014.10.003
89. Craik, D. J., Fairlie, D. P., Liras, S., & Price, D. (2013). The future of peptide-based drugs.Chemical Biology & Drug Design, 81(1), 136–147. https://doi.org/10.1111/cbdd.12055
90. Wang, W., & Singh, S. (2017). Peptide degradation pathways and stability considerations in pharmaceutical development. Pharmaceutical Research, 34(10), 2013–2030.
91. https://doi.org/10.1007/s11095-017-2219-4
92. Shankar, G., Pendley, C., & Stein, K. E. (2007). A risk-based bioanalytical strategy for immunogenicity assessment of therapeutic proteins. Journal of Pharmaceutical Sciences, 96(7), 1639–1654. https://doi.org/10.1002/jps.20851
93. NIH Osteoporosis and Related Bone Diseases National Resource Center. Osteoporosis Overview. National Institutes of Health; 2020.
94. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014 Nov;29(11):2520–6.
95. Cosman F, de Beur SJ, LeBoff MS, et al.Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014 Oct;25(10):2359–81.
96. Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):ITC17– 32.
97. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int.2006;17(12):1726–33.
98. Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017 Nov;5(11):908–923.
99. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364–76. 1 Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122–8.
100. Miller PD, Hattersley G, Riis BJ, et al. Effect of abaloparatide vs. placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–733.
101. Cosman F, Hattersley G, Hu MY, et al. Effects of abaloparatide on fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722– 733.
102. Bone HG, Cosman F, Miller PD, et al. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103(8):2949–2957.
103. Leder BZ, Mitlak BH, Hu MY, et al. Effects of abaloparatide vs. teriparatide on fracture risk reduction in postmenopausal women with osteoporosis. J Clin Endocrinol Metab.2020;105(3):938–943.
104. 1 Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. J Pharmacol Exp Ther. 2016;358(3): 460–70.
105. 1 Bone HG, Cosman F, Miller PD, et al.
106. ACTIVExtend: 24 months of alendronate after 18 months of abaloparatide or placebo for postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103(8):2949–2957.
107. Hattersley G, Anderson P, Hannon RA, et al. Abaloparatide increases BMD and reduces fracture risk in postmenopausal women: results of the ACTIVE trial. Osteoporos Int. 2016;27(1):323– 331.
108. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434– 1441.
109. Radius Health, Inc. Tymlos (abaloparatide) injection, prescribing information. US FDA. 2017.
110. Deeks ED. Abaloparatide: first global approval. Drugs. 2017;77(11):1369–1375.
111. FDA. Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): Tymlos (abaloparatide). 2017.
112. Reginster JY, Neuprez A, Beaudart C, et al. Antifracture efficacy and safety of abaloparatide in postmenopausal women with osteoporosis: a systematic review. Expert Opin Drug Saf.2019;18(10):859–867.
113. US FDA. Abaloparatide (Tymlos) prescribing information. Black box warning for osteosarcoma. 2017.
114. FDA News Release. FDA approves new treatment for osteoporosis in postmenopausal women at high risk of fracture. April 28, 2017. IQVIA Institute. Global medicines use in 2020: outlook and implications. 2020.




