Volume : 12, Issue : 09, September – 2025
Title:
ECO-FRIENDLY NANOPARTICLE SYNTHESIS AND ITS EMERGING BIOMEDICAL AND ENVIRONMENTAL ROLES
Authors :
Shahbaz Fatima, Noorunnisa Begum, Syeda Sameena Aziz, Mohammad Haji Baba, Fatima Begum, Nawaz Mohammed Khan*, Mohammad Shamim Qureshi
Abstract :
The burgeoning field of nanotechnology has revolutionized numerous sectors, yet the conventional physicochemical methods for nanoparticle (NP) synthesis are often plagued by high energy consumption, the use of hazardous chemicals, and the generation of toxic byproducts. This has spurred a significant paradigm shift towards sustainable and eco-friendly synthesis approaches. Utilizing biological resources such as plants, algae, fungi, and bacteria, green synthesis offers a cost-effective, energy-efficient, and environmentally benign alternative. This review meticulously examines the mechanisms of bio-reduction and bio-fabrication involved in the green synthesis of metallic nanoparticles (e.g., silver, gold, zinc oxide, and iron oxide). We delve into the critical parameters influencing the size, shape, and stability of the synthesized NPs. Furthermore, we provide a comprehensive analysis of the emerging and pivotal roles these green nanoparticles play in biomedical applications, including as antimicrobial, anticancer, and anti-biofilm agents, as well as in drug delivery, biosensing, and medical imaging. Concurrently, we explore their significant environmental applications in wastewater treatment, heavy metal remediation, and catalytic degradation of pollutants. Finally, we address the current challenges in scalability, standardization, and precise mechanistic understanding, while outlining future perspectives for the clinical and commercial translation of green nanotechnology.
Keywords: Green Synthesis, Nanoparticles, Biomedicine, Environmental Remediation, Sustainability, Phytochemicals, Bioreduction, Antimicrobial, Catalysis.
Cite This Article:
Please cite this article in press Nawaz Mohammed Khan et al., Eco-Friendly Nanoparticle Synthesis And Its Emerging Biomedical And Environmental Roles, Indo Am. J. P. Sci, 2025; 12(09).
REFERENCES:
1. Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346. https://doi.org/10.1021/cr030698+
2. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–50. https://doi.org/10.1039/C1GC15386B
3. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J Nanobiotechnology. 2018;16:84. https://doi.org/10.1186/s12951-018-0408-4
4. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016;7(1):17–28. https://doi.org/10.1016/j.jare.2015.02.007
5. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–56. https://doi.org/10.1016/j.biotechadv.2013.01.003
6. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J. 2016;24(4):473–84. https://doi.org/10.1016/j.jsps.2014.11.013
7. Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. TrAC Trends Anal Chem. 2013;61:19–28. https://doi.org/10.1016/j.trac.2014.04.019
8. Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA. 1999;96(24):13611–14. https://doi.org/10.1073/pnas.96.24.13611
9. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1-2):1–13. https://doi.org/10.1016/j.cis.2010.02.001
10. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Biological synthesis of nanoparticles: A green approach. Environ Toxicol Pharmacol. 2016;45:213–22. https://doi.org/10.1016/j.etap.2016.06.005
11. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach. Nano Lett. 2001;1(10):515–19. https://doi.org/10.1021/nl0155274
12. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. 2010;6(2):257–62. https://doi.org/10.1016/j.nano.2009.07.002
13. Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:270974. https://doi.org/10.1155/2011/270974
14. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–89. https://doi.org/10.4103/0975-7406.72127
15. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ Toxicol Pharmacol. 2019;71:103220. https://doi.org/10.1016/j.etap.2019.103220
16. Ramesh PS, Kokila T, Geetha D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc. 2015;142:339–43. https://doi.org/10.1016/j.saa.2015.01.062
17. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502. https://doi.org/10.1016/j.jcis.2004.03.003
18. Skoog DA, Holler FJ, Crouch SR. Principles of Instrumental Analysis. Boston: Cengage Learning; 2017.
19. Haverkamp RG, Marshall AT. The mechanism of metal nanoparticle formation in plants: Limits on accumulation. J Nanopart Res. 2009;11(6):1453–63. https://doi.org/10.1007/s11051-009-9673-9
20. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
21. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–74. https://doi.org/10.3390/molecules20058856
22. Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci. 2015;4:1–3.
23. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. https://doi.org/10.3389/fmicb.2016.01831
24. Arokiyaraj S, Arasu MV, Vincent S, Prakash NU, Choi SH, Oh YK, et al. Rapid green synthesis of silver nanoparticles from Sabaegueum javanica plant extract and their antibacterial and anticancer activity against human breast cancer cells (MCF-7). Biomed Pharmacother. 2017;87:241–47. https://doi.org/10.1016/j.biopha.2016.12.083
25. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–15. https://doi.org/10.1016/j.addr.2008.03.016
26. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20. https://doi.org/10.1021/ja057254a
27. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8
28. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–82. https://doi.org/10.1039/C1CS15166E
29. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ. Multifunctional nanoparticles for targeted delivery of drugs and genes. Nanomedicine. 2009;4(5):519–28. https://doi.org/10.2217/nnm.09.28
30. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. https://doi.org/10.1021/nn900002m
31. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15. https://doi.org/10.1021/mp800051m
32. Yoo JW, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35. https://doi.org/10.1038/nrd3499
33. Wang X, et al. Stimuli-responsive drug delivery systems based on nanoparticles. Adv Drug Deliv Rev. 2019;143:171–205. https://doi.org/10.1016/j.addr.2019.07.002
34. Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–99. https://doi.org/10.1016/j.tibtech.2016.02.006
35. Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16(2):023501. https://doi.org/10.1088/1468-6996/16/2/023501
36. Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol. 2008;42(16):5843–59. https://doi.org/10.1021/es8006904
37. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
38. Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47(12):3931–46. https://doi.org/10.1016/j.watres.2012.09.058
39. Nasrollahzadeh M, Issaabadi Z, Sajadi SM, Sajjadi M, Atarod M. Recent progress in sustainable catalytic applications of bio-inspired metal nanoparticles: An overview. Catal Rev. 2019;61(3):248–341. https://doi.org/10.1080/01614940.2018.1549800
40. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31. https://doi.org/10.1016/j.arabjc.2017.05.011




