Volume : 09, Issue : 12, December – 2022

Title:

46.QUALITY CONTROL FOR CONVENTIONAL X-RAY MACHINES

Authors :

Aisha Jamaan Al hadramu,‏ Khadija Eid AL harbi,‏ Amal Ali Alouhaly,‏ hawa bakr haroon barnawi,‏ Hussam Mohammed Ali, ‏Hassan mohammed alfahmi, ‏Ammar Jameel Alyamani,‏ Naimah Hamed Alharthi,‏ Mohammed ali Mohammed Alqadi,‏ hashim jabir jabir almujayrishii,‏ Ibrahim mohamed salhe althubyani, Mohammed Fawaz ALomayri,‏ Hutaf mohammed mashat,‏ Anoud Mohammed Hadidi ,‏ Rafat Fareed Dahwah, Aaglah Ahmed Aqeshi,Nadiah Taher Al hawsawi,‏ Kholood Ali Alasmari

Abstract :

Introduction: This study will be conducted to quality controlassessment of conventional radiology X-ray devices. The importance of radiology to confirm diagnoses and management plan became in priorities in diagnosis nowaday, as well as it is evident. Also, the whole medical field seek towards the development and control of equipment of X-ray
Marital and method: We will use standard quality control assessment tests that will be performed in this study, which include voltage accuracy as the first test, and reproducibility, then degree of exposure time, also we will use standard of tube output reproducibility, linearity, filtration, and beam alignment will be performed and evaluated. All of this assessment will be performed by using multi-purpose detector.
Result: By using the tools for calibration and Ray safe for measurement phantom measurement (HVL filter Exposure parameter 🙁 Kv- mAs -HVL- image quality – Sensor) after takeall measurement collected and analysis dates Excel sheet Compare radiation dose with national diagnostic reference level
(AAPM74)
Conclusion: The primary objective of a quality assurance program in the radiology department is to ensure prompt and accurate diagnosis with minimal potential harm to patients and staff Assessment and Optimization of measurement for calculate dose checking the value of exposure to the X-ray machine.

Cite This Article:

Please cite this article in press Aisha Jamaan Al hadramu et al, Quality Control For Conventional X-Ray Machines.., Indo Am. J. P. Sci, 2022; 09(12).

Number of Downloads : 10

References:

1. Rontgen W. Ueber eine neue Art von Strahlen. Vorläufige Mitteilung. In: Aus den Sitzungsberichten der Würzburger Physik.-medic, Gesellschaft Würzburg; 1895, p. 137–47.
2. Rontgen W. Eine neue Art von Strahlen. 2. Mitteilung. In: Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg; 1896, p. 11–17.
3. R. Behling, Modern Diagnostic X-ray Sources – Technology- ManufacturingReliability, first ed., CRC Press – Taylor and Francis Group, LLC, Boca Raton, FL, USA, 2016.
4. R. Behling, The MRC 200: A new high-output X-ray tube, Medicamundi 35 (1990).
5. J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE, Bellingham, Washington, USA, 2015.
6. W.A. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications, third ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2011
7. http://eu.wiley.com/WileyCDA/WileyTitle/productCd389578317X.html.
8. Zink, F. E. (1997). X-ray tubes. Radiographics : A Review Publication of the Radiological Society of North America, Inc, 17(5), 1259–1268. https://doi.org/10.1148/radiographics.17.5.9308113
9. High Brightness X-ray source for Directed energy and Holographic Imaging Applications Retrieved from https://ediovision.blogspot.com/2020/01/high- brightness-x-ray-source-for.html on 29/05/2020
10. Cherns, D., Howie, A., & Jacobs, M. H. (1973). Characteristic X-ray production in thin crystals. Zeitschrift für Naturforschung A, 28(5), 565-576.
11. Merzbacher, E., & Lewis, H. W. (1958). X-ray Production by Heavy Charged Particles. 904(1), 166–192. https://doi.org/10.1007/978-3-642-45898-9_4
12. Decourchelle, A., Ellison, D. C., & Ballet, J. (2000). Thermal X-Ray Emission and Cosmic-Ray Production in Young Supernova Remnants. The Astrophysical Journal, 543(1), L57–L60. https://doi.org/10.1086/318167
13. Brettschneider, H. (1993). U.S. Patent No. 5,259,014. Washington, DC: U.S. Patent and Trademark Office.
14. Iversen, A. H., & Whitaker, S. (1984, June). A new high heat load x-ray tube. In Application of Optical Instrumentation in Medicine XII (Vol. 454, pp. 304-311). International Society for Optics and Photonics.
15. The physics of Radiation Therapy Retrieved from http://docshare.tips/the- physics-of-radiationtherapy_59099b00ee3435bf34993789.html on 20/07/2020
16. Do Nascimento, M. Z., Frère, A. F., & Germano, F. (2008). An automatic correction method for the heel effect in digitized mammography images. Journal of Digital Imaging, 21(2), 177–187. https://doi.org/10.1007/s10278-007- 9072-1
17. Understanding and managing noise sources in x-ray imaging Retrieved from https://www.carestream.com/blog/2020/04/21/understanding-and-managing- noise-sources-in-xray-imaging/ on 30/05/2020
18. X-ray Tube Retrieved from https://clinicalgate.com/the-x-ray-tube/ on 30/05/2020
19. X ray Retrieved from http://www.scienceclarified.com/Vi-Z/X-Ray.html on 29/05/2020
20. Stanjek, H., & Häusler, W. (2004). Basics of X-ray Diffraction. Hyperfine Interactions, 154(1-4), 107-119.
21. Speakman, S. A. (2011). Basics of X-ray powder diffraction. Massachusetts-USA, 2011a. Disponível em:< http://prism. mit. edu/xray/Basics% 20of% 20X-Ray% 20Powder% 20Diffraction. pdf.
22. Zhang, L., Panarella, E., Hilko, B., & Chen, H. (1995, May). Characteristics of the X-ray/EUV emission from spherically pinched and vacuum spark sources. In
23. Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V (Vol. 2437, pp. 356-363). International Society for Optics and Photonics.
24. X-rays Retrieved from https://www.encyclopedia.com/science- andtechnology/physics/physics/x-ray on 31/05/2020
25. Lécuyer, M., Ducoffe, G., Lan, F., Papancea, A., Petsios, T., Spahn, R., … & Geambasu, R. (2014). Xray: Enhancing the web’s transparency with differential correlation. In 23rd {USENIX} Security Symposium ({USENIX} Security 14) (pp. 49-64).
26. Als-Nielsen, J., & McMorrow, D. (2011). Elements of modern X-ray physics. John Wiley & Sons.
27. Hannon, J. P., Trammell, G. T., Blume, M., & Gibbs, D. (1988). X-ray resonance exchange scattering. Physical review letters, 61(10), 1245.
28. Momose, A. (2005). Recent advances in X-ray phase imaging. Japanese journal of applied physics, 44(9R), 6355. [28] Suryanarayana, C., & Norton, M. G. (2013). X-ray diffraction: a practical approach. Springer Science & Business Media.
29. George, I. M., & Fabian, A. C. (1991). X-ray reflection from cold matter in active galactic nuclei and X-ray binaries. Monthly Notices of the Royal Astronomical Society, 249(2), 352-367.
30. E. Espes, T. Andersson, F. Bjornsson, C. Gratorp, B.A.M. Hansson, O. Hemberg,
31. G. Johansson, J. Kronstedt, M. Otendal, T. Tuohimaa, P. Takman, Liquid-metal- jet x-ray tube technology and tomography applications, SPIE Opt. Eng. þ Appl. 9212 (2014) 92120J, http://dx.doi.org/10.1117/12.2061612
32. G.A. Johansson, A. Holmberg, H.M. Hertz, M. Berglund, Design and performance of a laser-plasma-based compact soft x-ray microscope, Rev. Sci. Instrum. 73 (2002) 1193, http://dx.doi.org/10.1063/1.1445870
33. R. Raupach, T. Flohr, Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging, Med. Phys. 39 (2012) 4761, http://dx.doi.org/10.1118/1.4736529
34. T. Weber, G. Pelzer, J. Rieger, A. Ritter, G. Anton, Report of improved performance in Talbot-Lau phase contrast computed tomography, Med. Phys. Lett. 42 (2015) 2892–2896.
35. E. Roessl, H. Daerr, T. Koehler, G. Martens, U. van Stevendaal, Clinical boundary conditions for grating-based differential phase-contrast mammography, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2014) 1–7, http://dx.doi.org/ 10.1098/rsta.2013.0033.
36. E. Gidcumb, B. Gao, J. Shan, C. Inscoe, J. Lu, O. Zhou, Carbon nanotube electron field emitters for x-ray imaging of human breast cancer, Nanotechnology 25 (2014) 245704, http://dx.doi.org/10.1088/0957-4484/25/24/245704.
37. Mohammed Ahmed Ali Omer, Evaluation of Diagnostic Radiology Department in Term of Quality Control (QC) of X-ray Units at Khartoum State Hospitals, International Journal of Science and Research, Vol. 4 Issue 12, December 2017.
38. Behrouz Rasuli et al, Quality Control of Conventional Radiology Devices in Selected Hospitals of Khuzestan Province, Iran, Iranian Journal of Medical Physics,Vol.12, No. 2, Spring 2015, 101-108
39. E. Shefer, A. Altman, R. Behling, R. Goshen, L. Gregorian, Y. Roterman, I. Uman, N. Wainer, Y. Yagil, O. Zarchin, State of the art of CT detectors and sources: A literature review, Curr. Radiol. Rep. 1 (2013) 76–91, http://dx.doi.org/10.1007/ s40134-012-0006-4.
40. Tubiana M. Tubiana M. Cancer Radiother. 2009 Jul;13(4):238-58. doi: 10.1016/j.canrad.2009.03.003. Epub 2009 Jun 17. Cancer Radiother. 2009. PMID: 19539515 Review. French.
41. G.V. Pavlinsky, Fundamentals of X-ray Physics, Cambridge International Science Publishing Ltd, Cambridge, UK, 2008.
42. X. Liu, A. Srivastava, H.-K. Lee, J. Hsieh, Monte Carlo simulation of bowtie filter scatter on a wide-cone low-dose CT system, Proc. SPIE 8668, Medical Imaging 2013: Physics of Medical Imaging, 86685W (March 6, 2013), SPIE, Bellingham, WA. http://dx.doi.org/10.1117/12.2006618.
43. Behrouz Rasuli et al, Quality Control of Conventional Radiology Devices in Selected Hospitals of Khuzestan Province, Iran, Iranian Journal of Medical Physics,Vol.12, No. 2, Spring 2015, 101-108
44. M.H Kharita et al, a Comparative Study of Quality Control In Diagnostic Radiology, Radiation Protection Dosimetry (2008), pp. 1–5.
45. Wilson M. Ngoye, Jenny A. Motto, Wilbroad E. Muhogora. Quality Control Measures in Tanzania: Is it done? Journal of Medical Imaging and Radiation Sciences, 46 (2015), pp. S23-S30
46. Maria Lucia Nana I Ebisawa, Maria de Fatima A Magon, Yvone M Mascarenhas. Evaluation of X-ray machine quality control acceptance indices, Journal of Applied Clinical Medical Physics, Volume 10, Number 4, 2009, 252–259, DOI:10.1120/jacmp.v10i4.3007
47. Mohammed Ahmed Ali Omer, Evaluation of Diagnostic Radiology Department in Term of Quality Control (QC) of X-ray Units at Khartoum State Hospitals, International Journal of Science and Research, Vol. 4 Issue 12, December 2017.
48. Behrouz Rasuli et al, Quality Control of Conventional Radiology Devices in Selected Hospitals of Khuzestan Province, Iran, Iranian Journal of Medical Physics,Vol.12, No. 2, Spring 2015, 101-108
49. Maria Lucia Nana I Ebisawa, Maria de Fatima A Magon, Yvone M Mascarenhas. Evaluation of X-ray machine quality control acceptance indices, Journal of Applied Clinical Medical Physics, Volume 10, Number 4, 2009, 252– 259, DOI:10.1120/jacmp.v10i4.3007
50. Jimenez P, Borrás C, Fleitas I. Accreditation of diagnostic imaging services in developing countries. 2006. Pan American Journal of Public Health 20(2/3): 104–112
51. Wagner LK, Fontenla DP, Kimme-Smith C, Rothenberg LN, Shepark J, Boone JM. Recommendations on performance characteristics of diagnostic exposure meters: Report of AAPM Diagnostic X-Ray Imaging Task Group No. 6. Med Phys. 1992. AAPM 19(1): 231-241.
52. Gray L, Dowling A, Gallagher A. et al. Acceptance testing and routine quality control in general radiography: mobile units and film/screen fixed systems. Rad Protec Dosimetry, 2008, 129(1/3): 276–78
53. Huda W, Nickoloff EL, Boone JM. Overview of patients dosimetry in diagnostic radiology in the USA for the past 50years. Med Phys. 2008, 35(12), 5713–28
54. Ertuk SM, Ondategui-Parra S, Ros PR. Quality management in radiology: historical aspects and basic definitions. J Am Coll Radiol. 2005, 2(12), 985–991.
55. Freitas MB, Yoshimura EM. Levantamento da Distribuição de Equipamentos de Diagnóstico por Imagem e da Frequência de Exames Radiológicos no Estado de São Paulo. Radiologia Brasileira. 2005, 38(5), 347–354.
56. C.J. Martin. Management of patient dose in radiology in the UK. Radiation Protection Dosimetry, 147 (3) (2011), pp. 355-372
57. Wilbroad E. Muhogora, Nada A. Ahmed, Aziz Almosabihi, Jamila S. Alsuwaidi, Adnan Beganovic, Ciraj-Bjelac Olivera, et al. Patient doses in radiographic examinations in 12 countries in Asia, Africa, and Eastern Europe: initial results from IAEA projects. AJR American Journal of Roentgenology, 190 (6) (2008), pp. 1453-1461
58. Wilson M. Ngoye, Jenny A. Motto, Wilbroad E. Muhogora. Quality Control Measures in Tanzania: Is it done? Journal of Medical Imaging and Radiation Sciences, 46 (2015), pp. S23-S30
59. Ofori K. Eric, William K. Antwi, Diane N. Scutt, Matt Ward. Optimization of patient radiation protection in pelvic X-ray examination in Ghana. Journal of Applied Clinical Medical Physics, 13 (4) (2012), pp. 160-171
60. E.K. Osei, J. Darko. A survey of organ equivalent and effective doses from diagnostic radiology procedures. ISRN Radiology, 2013 (2013), p. 204346, http://dx.doi.org/10.5402/2013/204346
61. Seo Deoknam, Seogoo Jang, Jungmin Kim, Jungsu Kim, Dongwook Sung, HyunJi Kim. A comparative assessment of entrance surface doses in analogue and digital radiography during common radiographic examinations. Radiation Protection Dosimetry, 158 (1) (2014), pp. 22-27
62. P. C. Shrimpton and B. F. Wall, The increasing importance of X ray computed tomography as a source of medical exposure, Radiation Protection Dosimetry, vol. 57, no. 1–4, pp. 413–415, 1995.
63. R. R. Cruces, J. García-Granados, F. J. Diaz Romero, and J. Hernández Armas, Estimation of effective dose in some digital angiographic and interventional procedures, British Journal of Radiology, vol. 71, pp. 42–47, 1998
64. C. H. McCollough, J. A. Christner, and J. M. Kofler, How effective is effective dose as a predictor of radiation risk? American Journal of Roentgenology, vol. 194, no. 4, pp. 890–896, 2010
65. J. Geleijns, J. G. Van Unnik, J. Zoetelief, D. Zweers, and J. J. Broerse, Comparison of two methods for assessing patient dose from computed tomography, British Journal of Radiology, vol. 67, no. 796, pp. 360–365, 1994
66. K. A. Jessen, P. C. Shrimpton, J. Geleijns, W. Panzer, and G. Tosi, Dosimetry for optimisation of patient protection in computed tomography, Applied Radiation and Isotopes, vol. 50, no. 1, pp. 165–172, 1999
67. J. E. Ngaile and P. K. Msaki, Estimation of patient organ doses from CT examinations in Tanzania, Journal of Applied Clinical Medical Physics, vol. 7, no. 3, pp. 80–94, 2006.