Volume : 10, Issue : 05, May – 2023

Title:

79.A REVIEW ON MAGNETIC NANOPARTICLES- SYNTHESIS, FUNCTIONALIZATION AND APPLICATIONS

Authors :

T.Indira Priyadarshini*, Dr.Chandrasekhar Rao Baru, Dr.CH.Kantlam, G.Srujana

Abstract :

Magnetic nanoparticles are nanoparticles which exhibit superparamagnetic properties owing to their small size. They have wide range of applications which are mentioned else where in this review[1]. One of them is targeting of drugs to site of action, known by the terms site-specific drug delivery or drug targeting. In this method magnetic nanoparticles as drug carriers are administered in to the body and are manipulated by external magnetic fields to reach the target area. This method is highly valuable for treating cancers due to the advantages that normal cells are not exposed to the cytotoxic drugs. Further it resulted in improved efficacy, reduced drug dosage and side effects. Magnetic drug targeting requires two components, a nano sized carrier particle system and an external magnet system to guide the drug carriers to the target site. Till date there have been many efforts to design the magnet systems for targeted drug delivery. This review gives a detailed account on the preparation methods, applications along with recent progress that has taken place in this field

Cite This Article:

Please cite this article in press T.Indira Priyadarshini et al, A Review On Magnetic Nanoparticles- Synthesis, Functionalization And Applications., Indo Am. J. P. Sci, 2023; 10 (05).

Number of Downloads : 10

References:

1. Kudr, J., Haddad, Y., et al., 2017. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials 7 (243), http: //dx.doi.org/10.3390/nano7090243

2. Alonso, J., Barandiarán, J.M., et al., 2018. Magnetic nanoparticles, synthesis, properties, and applications. In: El-Gendy, A.A., Barandiarán, José M., Hadimani, R.L. (Eds.),

3. Magnetic Nanostructured Materials: From Lab to Fab. pp. 1–40. http://dx.doi.org/10.1016/B978-0-12-813904-2.00001-2

4. Seyed Mohammadali Dadfar, Karolin Roemhild, Natascha I. Drude, Saskia von Stillfried, Ruth Knüchel, Fabian Kiessling, Twan Lammers, 2019, Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications, Advanced Drug Delivery Reviews, Volume 138, Pages 302-325,

5. Albalah, M.A., Alsabah, Y.A., Mustafa, D.E., 2020. Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment. SN Appl. Sci. 25 (2), 1–9. http://dx.doi.org/10.1007/S42452-020-2586-6, 2020.

6. Salabat, A., Mirhoseini, F., 2018. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq. 268, 849–853. http://dx.doi.org/10.1016/j.molliq.2018.07.112

7. Shan, J., Wang, L., et al., 2016. Recent progress in Fe3O4 based magnetic nanoparticles: from synthesis to application. Mater. Sci. Technol. 32, 602–614. http://dx.doi.org/10.1179/1743284715Y.0000000122

8. Shatrova, N., Yudin, A., et al., 2017. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction. Mater. Res. Bull. 86, 80–87. http://dx.doi.org/10.1016/J.MATERRESBULL.2016.10.010

9. Sivakami, M., Renuka Devi, K., et al., 2020. Green synthesis of magnetic nanoparticles via cinnamomum verum bark extract for biological application. J. Environ. Chem. Eng. 8, 104420. http://dx.doi.org/10.1016/J.JECE.2020.104420

10. Ahmadi, S., Fazilati, M., et al., 2021. Green synthesis of magnetic nanoparticles using satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance. Biomed. Res. Int. 2021, http://dx.doi.org/10.1155/2021/8822645.

11. Anderson, S.D., Gwenin, V.V., Gwenin, C.D., 2019. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett. http://dx.doi.org/10.1186/s11671-019-3019-6

12. K ˛edzierska, M.; Drabczyk, A.; Jamrozy, M.; Kudłacik- ˙ Kramarczyk, S.; Gł ˛ab, M.; Tyliszczak, B.; Ba ´nkosz, W.; Potemski, P. 2022, The Synthesis Methodology and Characterization of NanogoldCoated Fe3O4 Magnetic Nanoparticles. Materials 15, 3383. https://doi.org/10.3390/ ma15093383

13. Estelrich Joan, Escribano Elvira, Queralt Josep, Busquets Maria 2015, Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery, International Journal of Molecular Sciences (16) 8070-8101 DO – 10.3390/ijms16048070

14. Jegathaprathaban Rajesh, Rangaswamy Chinnabba Bhaskar, Gunasekaran Vijayasri, 2022, Recent developments and upcoming perspective of magnetic nanoparticles in biomedical applications, Editor(s): Chaudhery Mustansar Hussain, Ketaki Ketan Patankar, In Woodhead Publishing Series in Electronic and Optical Materials, Fundamentals and Industrial Applications of Magnetic Nanoparticles, Woodhead Publishing, Pages 447-474,

15. Farzin.A, Etesami. S. A.,Quint. J.,Memic. A and Tamayol.A (2020). Magnetic Nanoparticles in cancer Therapy and Diagnosis. Adv. Healthc Mater. 9, 1901058 doi: 10.1002/adhm. 201901058.

16. Goel.s, England.c.G, chen F, cai. W,(2017). position Emission Tomography and Nanotechnology: A Dynamic Duo for Cancer Theranostics. Adv. Drug Deliv.Rev. 113 1157-176 Doi:1o.1016/j.addr.2016.08.001

17. Liu X, Zhang Y, Wang .Y, Zhu.W.,Li, G.,Ma, X., et al. (2020) Comprehensive understanding of Magnetic Hyperthermia for improving Antitumor Therapeutic Efficacy. Theranostics 10, 3793-3815.Doi:10-7150 /thno. 40805

18. kang. T.,Li,F., Baik, S., Shao, w., Ling, D., and Hyeo,T. (2017). Surface Design of Magnetic Nanoparticles for stimuli- Responsive cancer imaging and Therapy Biomaterials 136, 98-114. doi: 10.1016/j.biomaterials. 2017.05.013.

19. Yoo, D., Lee, J-H Shin, T.-H, and Cheon, J. (2011). Theranostic magnetic Nanoparticles. Acc. Chem. Res. 44,863-874. doi:10.1021/ar200085c.

20. Zazo, H., colino.c. I.and lanao. J.M. (2016). Current Applications of Nanoparticles in Infectious Diseases. J. Controlled Release 224,86-102. Doi:10.1016/J.Jconvel. 2016.01.008.

21. Heffner,s.M , Malmstem. M. (2017). Membrane interactions and Antimicrobial Effects of inorganic Nanoparticles. Adv. colloid. Interf. Sci. 248 ,105- 128. Doi: 10.1016/J. CiS- 2017.07.029.

22. Huang.k-S₁ Shieh, D.-B. Yeh,c.s.,Wu,p-c-and cheng ,F-y(2014).Antimicrobial Applications of water- Dispersible Magnetic Nanoparticles in Biomedicine. Cmc 21,3312-3322. Doi: 10. 2174/0929867321666140304101752.

23. Haun.J.B, Yoon. T.J, Lee, H., and weissleder,R (2010). Magnetic Nanoparticle Biosensors .WIRES Nanomed. Nanobiotechnol. 2, 291-304. doi:10.1002/whan 84.
24. Rocha-Santos, T.A. p. (2014). Sensors and Biosensors Based on Magnetic Nanoparticles. Trac Trends Anal .chem. 62, 28-36. doi:10.1016/J. trac. 2014.06.016.

25. Xie, J. Liu,G.,Eden, H.S., Ai,H.,and ches,X. (2011). Surface-engineered magnetic Nanoparticle Platforms for cancer imaging and Therapy. Acc. Chem. Res. 44, 883-892 Doi: 10.1021/9v20004ab.

26. Jin, Y.,Liu, F., Shan, C., Tong, M., and Hou,Y. (2014). Efficient Bacterial capture with Amino acid modified Magnetic Nanoparticles.Water Res 50,124-134. doi:10.1016/J watres .2013 .11-045.

27. Hodges ,B.C.,cates. t. L. and Kim, J-H(2018). challenges and prospects of Advanced oxidation Water treatment using catalytic Nanomaterials. Nat. Nanotech. 13, 1642-650.Doi:10.1038/s41565-018-0216-X.

28. El-Temsah, Y.S, Sevcu, A., Bobcikova,k., Cernik, m.,Joner ,E. J. (2016) .DDT Degradation Efficiency and Ecotoxicological Effects of Two types of Nano- Sized zero-valent Iron(nZvI) in water and soil.chemosphere 144, 222.1-2228. doi:10.1016/J.chemosphere. 2015-10-122.

29. Rui, M., Ma,c,Hao,Y., Guo, J., Rui,Y., Tang,X., et al(2016).Iron Oxide Nanoparticles as a potential iron fertilizer for peanut CArachis hypogaea). Front plant Sci. 7,815. Doi:10.3389/fpls-2016-00815.

30. Mishra,S.Keswani,c., Abhilash,D., Fraceto,L.F., Singh,H.B (2017). Integrated Approach of Agri- Nanotechnology: challenges and future Trends-front plant sci8,471. dot: 10.3389/fpLS 2017.00471.

31. (22)Lee, J. ,Lee, Y., Youn, J. K.,Na, H. B., Yu, T.Kim,H.,et al. (2008). simple synthesis of functionalised Superparamagnetic magnetite/silica core/shell Nanoparticles and Their Application as magnetically separable High-performance Biocatalyst. Small 4, 143-152 .doi:10.1002/smll. 200700456.

32. L.prosen, s. Prijic, B. Music, J. Lavrencak, Cemazar and G Sersa, Magnetofection: A Reproducible method for Gene Delivery to Melanoma cells, Biomed Research International Hindawai Publishing Corporation, 2013, 211.

33. J. pardo,Y, E. Sosa, P. Reggiani, M.L. Arciniegas, F.H. Sanchez and R.G. Goya, magnetic field assissted gene transfer: Studies in glial cells, Acton Bioquim, Clin Latinoam., 2013, 47, 399-406.

34. S. Govindarajan,k.. Kitaura, M. Takafuj, H. Ihara,K.s. Varadarajan, A.B. patel and v. Gopal, Gene delivery into human cancer cells by cationic lipid mediated Magnetofection. Int. J. Pharm. 2013, 446,8799.

35. Laurene, c. sapnet, L.L. Gourrierec, E. Bertosio and o. Zelphati, Nucleic acid delivery using magnetic nanoparticles: the magnetofection technology,Ther Delivery, 2011,2,471-482.