Volume : 11, Issue : 03, March – 2024

Title:

NANO-QSAR MODELING FOR PREDICTING THE TOXICITY OF METAL-BASED METAL OXIDE NANOPARTICALS: AN IN-DEPTH EXPLORATION

Authors :

D.Pravallika, Dr.J.Gopala Krishna

Abstract :

A variety number of nanoparticles will increase rapidly in coming years and there is a need for new methods to test the toxicity of the materials. Now a days experimental evaluation of the safety of chemicals is expensive and time consuming. Computational nano QSAR models have been found to be efficient alternatives for predicting the toxicity of metal oxide nano particles.
The present study proposes a computational QSAR models for predicting the toxicity of MEONPs. Two types of mechanisms are collectively applied in a nano QSAR model,which provides control over the toxicity of metal oxide nanoparticles. The two parameters, enthalpy of formation of gaseous cation (∆Hme+) and polarization force(Z/r) were elucidated to make a significant contribution for the toxic effect of the metal oxide nanoparticles.

Cite This Article:

Please cite this article in press J.Gopala Krishna et al., Nano-QSAR Modeling For Predicting The Toxicity Of Metal-Based Metal Oxide Nanoparticles: An In-Depth Exploration,, Indo Am. J. P. Sci, 2024; 11 (03).

Number of Downloads : 10

References:

1) Bocca, B., Caimi, S., Senofonte, O., Alimonti, A. and Petrucci, F., 2018. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues. Science of the total environment, 630, pp.922-930.
(2) Haas, K.H., 2021. Application of Metal Oxide Nanoparticles and their Economic Impact. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces, 1, pp.29- 65.
(3) Hamidian, K., Saberian, M.R., Miri, A., Sharifi, F. and Sarani, M., 2021. Doped and un- doped cerium oxide nanoparticles: Biosynthesis, characterization, and cytotoxic study. Ceramics International, 47(10), pp.13895-13902.
(4) Simmons, S.O., Fan, C.Y. and Ramabhadran, R., 2009. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicological sciences, 111(2), pp.202-225.
(5) Li, J., Wang, C., Yue, L., Chen, F., Cao, X. and Wang, Z., 2022. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 243, p.113955.
(6) Puzyn, T., Rasulev, B., Gajewicz, A., Hu, X., Dasari, T.P., Michalkova, A., Hwang, H.M., Toropov, A., Leszczynska, D. and Leszczynski, J., 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature nanotechnology, 6(3), pp.175-178.
(7) De, P., Kar, S., Ambure, P. and Roy, K., 2022. Prediction reliability of QSAR models: an overview of various validation tools. Archives of Toxicology, 96(5), pp.1279-1295.
(8) Puzyn, T., Leszczynska, D. and Leszczynski, J., 2009. Toward the development of “nano‐ QSARs”: advances and challenges. Small, 5(22), pp.2494-2509.
(9) Li, J., Wang, C., Yue, L., Chen, F., Cao, X. and Wang, Z., 2022. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 243, p.113955.
(10) Na, M., Nam, S.H., Moon, K. and Kim, J., 2023. Development of a nano-QSAR model for predicting the toxicity of nano-metal oxide mixtures to Aliivibrio fischeri. Environmental Science: Nano, 10(1), pp.325-337.
(11) Basei, G., Hristozov, D., Lamon, L., Zabeo, A., Jeliazkova, N., Tsiliki, G., Marcomini, A. and Torsello, A., 2019. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review. NanoImpact, 13, pp.76- 99.
(12) Forest, V., Hochepied, J.F., Leclerc, L., Trouvé, A., Abdelkebir, K., Sarry, G., Augusto,V. and Pourchez, J., 2019. Towards an alternative to nano-QSAR for nanoparticle toxicity ranking in case of small datasets. Journal of Nanoparticle Research, 21, pp.1-14.
(13) Trinh, T.X., Seo, M., Yoon, T.H. and Kim, J., 2022. Developing random forest based QSAR models for predicting the mixture toxicity of TiO2 based nano-mixtures to Daphnia magna. NanoImpact, 25, p.100383.
(14) Singh, K.P. and Gupta, S., 2014. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Advances, 4(26), pp.13215-13230.
(15) Mu Y, Wu F, Zhao Q, Ji R, Qie Y, Zhou Y, Hu Y, Pang C, Hristozov D, Giesy JP, Xing
B. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology. 2016 Oct 20;10(9):1207-14.
(16) Bailer, A.J., Hughes, M.R., Denton, D.L. and Oris, J.T., 2000. An empirical comparison of effective concentration estimators for evaluating aquatic toxicity test responses. Environmental Toxicology and Chemistry: An International Journal, 19(1), pp.141- 150.
(17) Aruoja, V., Pokhrel, S., Sihtmäe, M., Mortimer, M., Mädler, L. and Kahru, A., 2015. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environmental Science: Nano, 2(6), pp.630-644.
(18) Murdock, R.C., Braydich-Stolle, L., Schrand, A.M., Schlager, J.J. and Hussain, S.M., 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological sciences, 101(2), pp.239-253.
(19) Singh, K.P. and Gupta, S., 2014. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Advances, 4(26), pp.13215-13230.
(20) Cao, J., Pan, Y., Jiang, Y., Qi, R., Yuan, B., Jia, Z., Jiang, J. and Wang, Q., 2020. Computer-aided nanotoxicology: risk assessment of metal oxide nanoparticles via nano- QSAR. Green Chemistry, 22(11), pp.3512-3521.
(21) Pan, Y., Li, T., Cheng, J., Telesca, D., Zink, J.I. and Jiang, J., 2016. Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC advances, 6(31), pp.25766-25775.
(22) Carnesecchi, E., Toropov, A.A., Toropova, A.P., Kramer, N., Svendsen, C., Dorne, J.L. and Benfenati, E., 2020. Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifera) through innovative QSAR models. Science of the Total Environment, 704, p.135302.
(23) Patel, M., Chilton, M.L., Sartini, A., Gibson, L., Barber, C., Covey-Crump, L., Przybylak, K.R., Cronin, M.T. and Madden, J.C., 2018. Assessment and reproducibility of quantitative structure–activity relationship models by the nonexpert. Journal of Chemical Information and Modeling, 58(3), pp.673-682.
(24) Tropsha, A., Gramatica, P. and Gombar, V.K., 2003. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22(1), pp.69-77.
(25) Gadaleta, D., Mangiatordi, G.F., Catto, M., Carotti, A. and Nicolotti, O., 2016. Applicability domain for QSAR models: where theory meets reality. International journal of quantitative structure-property relationships (IJQSPR), 1(1), pp.45-63.
(26) Zak, A.K., Majid, W.A., Abrishami, M.E. and Yousefi, R., 2011. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), pp.251-256.
(27) Venigalla, S., Dhail, D., Ranjan, P., Jain, S. and Chakraborty, T., 2013. Computational study about cytotoxicity of metal oxide nanoparticles invoking nano-QSAR. New Front. Chem, 23, pp.123-130.
(28) Leonard, J.T. and Roy, K., 2006. On selection of training and test sets for the development of predictive QSAR models. QSAR & Combinatorial Science, 25(3), pp.235-251.
(29) Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S., Wang, X., Liao, Y.P. and Wang, M., 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS nano, 6(5), pp.4349-4368.
(30) Burello, E., 2013. Profiling the biological activity of oxide nanomaterials with mechanistic models. Computational Science & Discovery, 6(1), p.014009.